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Abstract

This thesis treats one fundamental problem in computer vision which is image-based object

reconstruction. It concentrates on the problem of improving the geometric accuracy of the re-

constructed three-dimensional (3D) models. We define two principal lines of research which

are: i) improving camera calibration accuracy, and ii) improving reconstruction accuracy based

on Helmholtz Stereopsis (HS). Starting by improving the accuracy of camera calibration is a

natural idea, because it is a preliminary stage to most reconstruction techniques. HS is a rela-

tively recent reconstruction technique (2002), based on the principle of Helmholtz reciprocity,

and which is remarkable for its ability to reconstruct a wide range of surfaces, regardless of

their surface properties.

In camera calibration, we present a collection of methods based on invariants, which can be

used to improve calibration accuracy of the camera. Two main classes of methods are pre-

sented. The first one is based on Points at Infinity (PI), and applies to a translating cam-

era. The second one is based on a novel entity called the Normalised Image of the Absolute

Conic (NIAC). The NIAC generalises the invariance properties of the Image of the Absolute

Conic (IAC), and we demonstrate its application for zooming camera calibration. In both sit-

uations, experiments with synthetic and real data showed some improvement over standard

camera calibration methods which do not consider such invariance properties.

In object reconstruction using HS, we present two main contributions. Firstly, we improve the

intrinsic accuracy of the standard HS technique, by formulating an optimum normal recon-

struction method, which gives a Maximum Likelihood (ML) estimate under standard Gaussian

noise assumption. Secondly, we look at HS in a broader perspective, and observe that the

standard pixel based implementation is biased in the case of rough and/or strongly textured

surfaces. We propose a novel formulation, supported by recent research in the field of Physics,

which does not suffer from such limitations. Results are given with a variety of objects pre-

senting diverse surface properties and whose reconstruction with conventional reconstruction

techniques is challenging. We show that HS is able to produce realistic and visually accurate

3D models.

Keywords: Computer vision, camera calibration, Vanishing Points, Image of the Absolute

Conic, Normalised Image of the Absolute Conic, image-based object reconstruction, Helmholtz

Stereopsis.
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Hlaváč for receiving me as a visiting researcher at the CMP in Prague.

I would like to thank Dr. Emanuele Trucco and Prof. Adrian Hilton for examining this thesis,

and for their comments which improved greatly the quality of this document.

I would like to acknowledge all my colleagues at CVSSP and CMP, and also all my friends, for

their help and for making the PhD an enjoyable experience. Some special thanks go to Ondřej
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Notations

We adopt the following main mathematical typesetting conventions.

Scalar values are represented in italic, for example a or λ.

Vectors are represented in boldface italic, for example v. All vectors are assumed to be column

vectors by default. When a row vector is considered, this is indicated explicitely by using the

transpose symbol ⊤. For example p denotes a column vector, while p⊤ denotes a row vector.

By abuse of notation, A−⊤ denotes (A−1)⊤ or (A⊤)−1, where A is an invertible matrix.

Matrices are represented in a sans serif font, for example M or T . Block notations are used

when appropriate. For example [R|t] denotes the matrix which is the result of the concatenation

of the matrix R and the vector t (obviously they must have the same number of rows). When

a block consists only of zeros, it is usually omitted for clarity, for example





f
f

1



 stands

for





f 0 0
0 f 0
0 0 1



.

In projective geometry, entities are usually defined up to an arbitrary non-zero scale factor. The

∼ notation is used to represent equality up to the arbitrary non-zero scale factor.

Unless specified otherwise, ‖v‖ denotes the L2 norm of the vector v, which is defined as the

square root of the sum of its squared components.

The bar symbol over a variable, such as L̄, is sometimes used to represent the mean value of

the variable.
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Chapter 1

Introduction

Image-based object reconstruction consists in inferring three-dimensional (3D) information

from two-dimensional (2D) images. If we consider the human vision system, this task is per-

formed almost effortlessly. For example, our two eyes allow us to locate objects in the 3D

space and interact with them with an amazing simplicity; looking at an object for a brief period

of time allows us to appreciate its speed in addition to its trajectory; also, we can guess the

shape of an object from the way it reflects light, and we can anticipate the surface properties

of an object and even its shape from visual observation of the texture, even before touching it.

We have become so accustomed to reasoning in 3D that we tend to forget that our eyes provide

us only 2D information about our environment.

In computer vision, the sensor used to infer 3D information is the camera. Like the human

eye, the camera provides 2D information about the scene but in this case in the form of images,

which are collections of finite elements called pixels. The challenge of image-based object

reconstruction consists of recovering the 3D geometry of the scene from a set of such images.

Although the task appears almost trivial in the case of the human vision system, the translation

into automatic and accurate computer vision algorithms is still an area of active research.

The ability to build 3D models from images is of broad interest and finds applications in many

aspects of science as well as everyday life. Fields of application include for example 3D mea-

surements in manufacturing industry, where traditional metrology applications usually have a

high cost which can be reduced by using automatic artificial vision inspection techniques. The

1



2 Chapter 1. Introduction

entertainment industry is also a sector where computer vision is widely applied, in particular

in the production of special effects in films, and in the generation of virtual worlds for video

games. In robotics, 3D vision is of primary interest for the development of autonomous sys-

tems such as planetary land rovers used for the exploration of distant planets, or more generally

for the development of robots aimed at exploring hostile environments that cannot be accessed

directly by humans. In other applications such as augmented reality, computer vision is used

to supplement human vision. An example of this type of application is in medicine, where 3D

models of organs or tissues can be overlaid onto live images of a camera in order to assist the

surgeon during an operation.

Whether they are intended to replace or supplement the human vision system, accuracy is usu-

ally important. There are several ways of improving the accuracy of the reconstructed 3D

models. One strategy is to improve the knowledge of the sensor used to inspect the environ-

ment - this is done through camera calibration. The other strategy consists in improving the

reconstruction method used. In most situations, camera calibration is a preliminary stage to

reconstruction.

Let us illustrate the problem with a simple example which is not related to computer vision.

Suppose that we are given a ruler and would like to measure a 3D object as accurately as

possible. The first thing we would like to ensure before carrying out any measurement is that

the ruler is accurate. We may want to make sure that the graduations are reliable, and even try

to generate more graduations on the ruler if this is possible. This is what we call calibrating

the sensor. Once this is done, we can concentrate on the measurement itself. At this stage, the

object may be very irregular, we may not be able to access it from all possible angles because

of some spatial constraints, or we may simply have time constraints that prevent us from taking

as many measurements as we would like. For all these reasons, we may have to make some

strategic choices on the parts we are going to measure, and we may have to extrapolate the

dimensions of occluded areas by applying some arithmetic to the visible parts or by making

some assumptions on the surface. Some methodologies for reconstructing the shape of the

object may be more accurate than others. They are usually independent of the calibration

accuracy of the ruler.

Let us now come back to computer vision. Calibrating a sensor means building a model of
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the way it perceives its environment. In the case of a camera, we can think of each pixel as a

directional sensor: each pixel represents a line of sight on which must lie the 3D point viewed

by the camera. This is a geometric description of the camera. In addition, each pixel can take a

range of intensity values depending on the light reflected by the object surfaces that it captures,

the light received by a particular pixel depending on many factors such as the scene lighting,

the colours of the objects in the scene, the object surface properties and also their shape and

relative spacial arrangement. This is a photometric (or radiometric) description of the camera.

Object reconstruction involves transforming the low level 2D cues contained in the images into

high-level 3D models. Naturally both the geometric and the photometric properties of the cam-

era become useful at this stage. For example, the pixel position provides information about the

position in space of the imaged surface point and the pixel intensity provides information about

the local surface orientation at this point. There exists a multitude of reconstruction methods

each of them capitalising on a particular cue. In this thesis, the reconstruction technique chosen

is called Helmholtz Stereopsis (HS). It is based on a physical principle called Helmholtz reci-

procity and has been chosen for its wide range of application. Contrary to most reconstruction

methods, HS does not rely on any assumption regarding the surface properties.

1.1 Objectives

The main objective of this thesis is to investigate methods of improving the geometric accu-

racy of the reconstructed 3D models. We distinguish two main problems: camera calibration

and object reconstruction. Both problems contribute to the general accuracy of the 3D model

reconstructed. For example, the best reconstruction method would perform very poorly if the

camera is inaccurately calibrated, and equally, calibrating accurately a camera is of no use if

it is not followed by an accurate reconstruction method. Both problems can usually be treated

sequentially; first the camera is calibrated and then the object is reconstructed. It should be

mentioned here that there exists more sophisticated technique where the two task cannot be so

clearly separated (see Section 2.3.6).

Improving the geometric accuracy of 3D reconstruction is too general a problem, which goes

beyond the scope of a single PhD thesis. For this reason we have identified some more specific
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objectives. In the case of camera calibration, we concentrate on geometric calibration, therefore

leaving the radiometric calibration problem as a separate issue. In the case of reconstruction,

we focus on improving the accuracy of the reconstruction based on HS. Our objectives can

therefore be restated as follows in the light of the two main problems defined:

1. Improve the accuracy of geometric camera calibration,

2. Improve the accuracy of the reconstruction based on HS.

The essential issues addressed in this thesis are:

1. In camera calibration, the constraints used are provided by the observation of a specific

calibration object. The more images we take of the calibration object, the more con-

straints we have for the calibration of the camera. Multiplying the information available

by taking multiple images at different positions or with different lens settings is a priori

a plausible strategy for increasing the number of constraints and thereby the calibration

accuracy. However, everytime the camera moves or changes its settings, this also intro-

duces new parameters to calibrate. Can we significantly increase the number of views,

and thereby the number of calibration constraints available, without increasing arbitrarily

the dimensionality of the problem and affecting the calibration accuracy?

2. For object reconstruction, HS has been shown to be a powerful method for a large variety

of objects. Can we improve further the intrinsic accuracy of the method for such objects?

What are the limitations of the current HS algorithm? In particular, can we extend the

applicability of the method to a wider class of surfaces?

1.2 Contributions

Our contributions are at two levels. The first one is in camera calibration, the second one in

HS. They are clearly related by sharing the same goal: improving the geometric accuracy of

the 3D models reconstructed. But they are also distinct and independent. The reader interested

only in camera calibration will benefit from our work on camera calibration and is free to
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implement it followed by the reconstruction method of their choice. Similarly, our work on HS

is independent of the technique chosen to calibrate the camera.

In the case of camera calibration, our main contributions are the following:

• Investigation of the use of invariants to increase calibration accuracy.

• Proposition of a novel method based on Points at Infinity (PI) for calibrating a translating

camera. Contrary to similar methods which make use of the invariance to translation,

our method does not require the observation of sets of parallel lines in the scene and is

therefore more flexible. The novel method results in an improvement in the calibration

accuracy compared to standard calibration methods which do not exploit the invariance

property.

• Definition of a novel entity called the Normalised Image of the Absolute Conic (NIAC),

which is the extension of the Image of the Absolute Conic (IAC) to zooming invariance.

The NIAC is a geometric abstraction which encapsulates all the camera parameters in-

variant to zooming.

• Proposition of a novel method for calibrating a zooming camera based on the NIAC. The

method requires only to take several images of a plane and it has been shown to be more

accurate than other plane-based calibration methods.

In the case of image-based object reconstruction using HS, the following contributions have

been made:

• Definition of a radiometric distance for optimum normal estimation. The novel distance

introduced is a Maximum Likelihood (ML) estimate under standard Gaussian noise as-

sumption. This guarantees an optimum surface normal estimation.

• Observation that the standard HS constraint is biased in the case of rough and strongly

textured surfaces.

• Formulation of a novel HS constraint applicable to rough and/or strongly textured sur-

faces and demonstration of its success on a variety of challenging real objects.
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1.3 Structure of the thesis

The thesis is structured as follows. This chapter was a general introduction with the aim of

motivating the work presented in this thesis and stating the main objectives and contributions.

The rest of the thesis is divided into three parts. Part I is dedicated to camera calibration. It

starts with Chapter 2 in which we review the main camera calibration methods. In that chapter,

we also introduce some general concepts such as the camera models and some notations which

will be useful in the rest of the thesis. In Chapter 3, we propose a novel camera calibration

method for a translating camera. In Chapter 4, we continue our exploration of invariants and

define a novel invariant to translation, rotation, and zoom, called the NIAC. We show how this

invariant can be used to calibrate a zooming camera. Part II concentrates on the reconstruction

of 3D models from images. It starts with a broad review of the topic in Chapter 5. We consider

the applicability of the different techniques in terms of types of object surfaces to which they

apply. This motivates the choice of HS for reconstruction in this thesis. In Chapter 6, we tackle

the normal estimation problem with HS and come up with an optimum solution to the prob-

lem. In Chapter 7, we pursue reconstruction of surfaces using HS, but this time extending the

method to a wider class of surfaces, which could not be reconstructed efficiently by previous

implementations of the method. Part III, which consists only of Chapter 8, closes the discus-

sion on improving the geometric accuracy of the 3D models reconstructed. It concludes and

proposes some avenues for future work. Some additional material and proofs are given in the

appendices at the end of the thesis.

1.4 List of publications

The results from this research have been reported in a number of publications.

Conferences:

• J.-Y. Guillemaut, A.S. Aguado, and J. Illingworth. Using Points at Infinity for parameter

decoupling in camera calibration. In Proc. British Machine Vision Conference, pages

263–272, volume 1, September 2002.
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• J.-Y. Guillemaut, A.S. Aguado, and J. Illingworth. Calibration of a zooming camera

using the Normalized Image of the Absolute Conic. In Proc. International Conference

on 3-D Digital Imaging and Modeling, pages 225–232, October 2003.

• J.-Y. Guillemaut, O. Drbohlav, R. Šára, and J. Illingworth. Helmholtz Stereopsis on

rough and strongly textured surfaces. In Proc. International Symposium on 3D Data

Processing, Visualization and Transmission, pages 10–17, September 2004.

Journals:

• J.-Y. Guillemaut, A.S. Aguado, and J. Illingworth. Using Points at Infinity for parameter

decoupling in camera calibration. IEEE Transactions on Pattern Analysis and Machine

Intelligence, volume 27(2):265–270, February 2005.
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Chapter 2

Background

2.1 Introduction

The main sensor used in computer vision is the camera. It provides information about the

physical world surrounding us in the form of 2D images. Before being able to extract 3D

information from such images, it is important to be able to model the phenomenon taking

place in the camera during image formation. The estimation of the parameters of the model

of the image formation process is the aim of camera calibration. This is of major importance

in computer vision, as it is a preliminary stage to most vision based object reconstruction

techniques. As such, camera calibration has been a topic of interest in computer vision and

photogrammetry for nearly half a century, and there exists a very extensive literature on the

topic. It is obviously not possible to mention all the methods here, however this survey is

intended to give a good overview of the diversity of the existing approaches, including the

most commonly used methods.

The chapter is structured as follows. First, the different camera models are described in Sec-

tion 2.2. Then a taxonomy of the main approaches for the estimation of the parameters of

the camera model chosen is proposed in Section 2.3. In this chapter, we also introduce the

notations which will be employed in the rest of the thesis.

11
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Figure 2.1: Man Drawing a Lute, Albrecht Dürer, 1525. The artist illustrates here an example of device

which can be used to draw perspective images of objects.

2.2 Geometric camera model

The camera model characterises the mapping (perspective projection) from 3D world points

to 2D image points taking place in the camera during image formation. Historically, the first

perspective pictures appeared early in the fifteenth century with Renaissance painters who in-

troduced the primary concepts of perspective and projective geometry (see Fig. 2.1 for an il-

lustration of the principle). In particular, they designed tools such as the camera obscura (or

dark room), which is the ancestor of todays camera, in order to generate realistic rendering of

scenes. Some of the material contained in this section is now fairly standard, for this reason

references are sometimes omitted. The reader interested is referred to standard textbooks on

the topic [46, 154, 72].

2.2.1 Basic pinhole model

The pinhole camera model is the most commonly used geometric camera model in computer

vision. It is illustrated in Fig. 2.2. It consists of an image plane π and a point C called

the optical centre or the camera centre. The plane F passing through the optical centre and

parallel to the image plane is called focal plane. Focal plane and image plane are separated by
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Xc

Yc
Zc

focal
plane

image

plane

f0

π

C

c p

P

F

focal length

Figure 2.2: The pinhole model. Note that the image plane is placed in front of the focal plane even

though physically it is located behind; this convention is equivalent, it is preferred because it allows to

work with non-inverted images.

a distance f0 that is called the effective focal length. The line passing through the optical centre

and perpendicular to the image plane is called the optical axis; it intersects the image plane in

a point called principal point c.

A ray of light emitted by a scene point P travels through the optical centre and intersects the

image plane in an image point p. In the camera reference frame, centred at C with the Z axis

pointing along the optical axis (see Fig. 2.3), the relation linking a 3D point P c = [Xc, Yc, Zc, 1]⊤

and its projection pc = [xc, yc, wc]
⊤ in the image plane1 is expressed in homogeneous coordi-

nates by

pc ∼











f0 0

f0 0

1 0











P c , (2.1)

where the symbol ∼ denotes the equality up to a non-zero scale factor.

2.2.2 Extrinsic and intrinsic parameters

In the previous section, the camera reference frame was introduced because it was mathe-

matically the most appropriate for expressing the perspective projection in a simple form (see

1Note that by abuse of notation we have dropped the Z component in the expression of pc. Image points being

located in the image plane, the Z component is always equal to f0.
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Xc

Yc
Zc

Xw

Yw

Zw

reference

image
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tR,

Figure 2.3: The different reference frames used to model the image formation process. The intrinsic pa-

rameters represent the transformation from the image to the camera reference frame, while the extrinsic

parameters represent the transformation from the camera to the world reference frame.

Eq. (2.1)). In practice, however, the camera reference frame is not directly accessible to the

operator, because it is not attached to any visible reference object (the optical centre for ex-

ample is located somewhere inside the camera). For this reason, the image reference frame

and the world reference frame are defined; they are linked respectively to the image and some

easily recognisable features from the environment (or world). Two sets of parameters called in-

trinsic and extrinsic parameters are introduced; they characterise the transformations between

reference frames.

The intrinsic parameters

These parameters define the projective transformation between a 3D point Pc expressed in the

camera reference frame and its image p = [u, v, w]⊤ expressed in pixel coordinates. It has

already been seen in the previous section that the focal length models the central projection

within the camera reference frame. The other intrinsic parameters represent the 2D transfor-
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mation required to convert camera coordinates into image coordinates:

p ∼











mu −mu cot θ u0

mv/ sin θ v0

1











pc . (2.2)

(u0, v0) are the coordinates in pixels of the principal point, they represent the offset between

the origins of the two frames. mu and mv are the number of pixels per unit distance. Finally,

for generality, θ represents the angle between the axes u and v of the image reference frame.

For most normal cameras θ = π/2 rad, however in some rare instances this parameter can take

different values. In practice, it can also be convenient, for linearity of the equations, to compute

a general model with all the parameters. Combining Eq. (2.1) and (2.2), we obtain

p ∼ [K | 0] Pc , (2.3)

where K is called the calibration matrix and is defined by

K =











f0mu −f0mu cot θ u0

f0mv/ sin θ v0

1











. (2.4)

The parameters f0, mu and mv are redundant, they can be grouped into two new parameters,

the focal length f = f0mu in pixel units along the u axis, and the aspect ratio r = mv/mu.

The aspect ratio can be different from 1 in the case of CCD cameras, and it is usually necessary

to estimate it for an accurate calibration. Note also that the term s = −f cot θ is called the

skew parameter. In summary, K is parametrised by five intrinsic parameters:

K =











f −f cot θ u0

fr/ sin θ v0

1











. (2.5)

The extrinsic parameters

They define the transformation from the camera reference frame into the world reference frame.

This transformation models the camera orientation (rotation matrix R) and location (translation

vector t) with respect to the world reference frame. A world point P = [X, Y, Z, 1]⊤ and its
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coordinates P c in the camera reference frame are related by

Pc ∼





R t

1



P . (2.6)

There are six extrinsic parameters: three for the rotation and three for the translation.

Eq. (2.3) and (2.6) can be grouped into a single relation linking 3D points P in world coordi-

nates and their projection p in pixel coordinates:

p ∼ MP , with M = K [R | t] , (2.7)

where M is called the projection matrix. The projection matrix has eleven degrees of freedom

and is fully characterised by intrinsic and extrinsic parameters. The block form [R | t] repre-

sents the 3 by 4 matrix obtained from the concatenation of R and t. This concise notation is

commonly used in the rest of this thesis.

2.2.3 Zooming camera model

So far, only camera models with static parameters have been considered. Zooming camera

models, however, must incorporate variable parameters in order to accommodate variations in

the lens’ zoom. This is typically a complex problem, because of the variations in the optical

alignment of the lens’ components, and the displacement of these elements along the optical

axis which occur during zooming. The choice of the zoom model is usually dictated by the

accuracy required, and also by the individual specifications of each camera.

The primary effect of zooming is to change the focal length of the camera. To model this, it

is convenient to separate the focal length from the other intrinsic parameters, by defining the

following matrices:

K1 =











1 − cot θ u0

r/ sin θ v0

1











and F =











f

f

1











.

An ideal zooming camera model is obtained, with F encapsulating the zooming properties and

K1 containing the other intrinsic parameters:

M = K1F [R | t] . (2.8)
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It has been observed in [165, 166] that zooming can also affect the field of view of the camera,

which can be approximated by considering a variable principal point. A more accurate model

[166] considers a variable position of the optical centre along the optical axis (Z axis of the

camera reference frame), in addition to the three other variable parameters. In [163], a general

methodology for building models of cameras with variable parameters is presented and applied

to the case of variable zoom and focus lenses. The main idea is to describe each camera

parameter by a polynomial function of the lens control settings. More details can be found in

[164].

2.2.4 Lens distortion model

The pinhole model is generally a good approximation of the image formation process taking

place in most cameras. However, in reality, a number of deviations called aberrations are

observed. There are many types of deviations (see [127] for a detailed description). Typically

the radial distortion is the most significant one. It consists of a displacement of the image points

radially towards or away from the centre of radial distortion. Usually it is sufficient to claim that

the centre of radial distortion and the principal point are the same, but this is not necessarily the

case (see [166]). This effect is generally relatively well modelled if two distortion coefficients

k1 and k2 are introduced to warp distorted image points pd = [ud, vd, 1]⊤ to undistorted ones

p = [u, v, 1]⊤ by the relation











u = u0 + (ud − u0)(1 + κ1d
2 + κ2d

4)

v = v0 + (vd − v0)(1 + κ1d
2 + κ2d

4)
with d2 = [r(ud − u0)]

2 + [vd − v0]
2 . (2.9)

For greater accuracy, it is necessary to introduce a centre of radial distortion independent of the

principal point.

2.2.5 Other models

Approximations of the general pinhole model

So far, it has been assumed that the optical centre of the camera is a finite point. It is possible

to define other models called affine models by placing the optical centre in the plane at infinity
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[72]. In addition, it is possible to construct approximations of the general pinhole model such

as the paraperspective or orthoperspective models. A hierarchy of such camera models is

presented in [6]. Such models are less accurate, however they present a reduced number of

parameters, which can reduce considerably the complexity of many applications.

Thin lens model

With the pinhole model, the objects observed were always in focus, because only one ray

coming from each visible point could enter the camera. But the aperture of a real camera is not

a point and it is therefore necessary to use an optical system made of lenses and other elements

to guarantee that the rays emerging from the same 3D point converge to the same image point.

The behaviour of these systems is relatively complex, however, it can be modelled relatively

accurately by the thin lens model [19]. With such a model only points located in a plane parallel

to the image plane can be in focus. An example of application is in shape from defocus, where

the amount of blur is used to infer the object geometry [27]. This model is much more complex

than the pinhole model, in particular it does not present the linear properties of the latter model,

and is therefore rarely used in computer vision applications.

2.3 Camera calibration

The problem of camera calibration consists in estimating the parameters of the model cho-

sen for the camera. Many of the techniques used in computer vision are inspired from the

photogrammetry literature. Typically, being able to calibrate a camera accurately is critical

because it affects directly the accuracy of the reconstruction made from images. The task is

carried out by deriving some relations between the 3D world and the images taken by the cam-

eras. Each relation constrains the camera parameters. When present in a sufficient number,

these constraints form a system, whose solution gives the values of each parameter. The com-

plexity of the equations depends on the nature of the relations that are established, therefore it

is of critical importance to consider adequate entities for the definitions of these relations. Typi-

cally, the entities considered for calibration are objects with known characteristics, for example

3D points with known coordinates (see Fig. 2.4). But it is possible to use more sophisticated
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Figure 2.4: A typical camera calibration pattern made of two orthogonal planes containing points with

known 3D coordinates (control points).

entities which, for example, can be more complex geometric shapes, or even imaginary objects

such as the Image of the Absolute Conic (IAC) (see Section 2.3.3). Other approaches called

auto-calibration (or self-calibration) remove completely the requirement of having any a pri-

ori knowledge about the scene observed. In this section, a taxonomy of the different camera

calibration methods is proposed. The methods are classified according to the properties of the

entities used to form the calibration constraints.

2.3.1 Calibration from point correspondences

The simplest correspondence which can be established is through 3D points with known coor-

dinates. These points are called control points and are defined on a calibration pattern, usually

made of two or three mutually orthogonal planes (see Fig. 2.4) and engineered with very high

accuracy. The key idea is to find values of the intrinsic and extrinsic parameters which will best

map the control points to their corresponding image points.

Linear methods

Linear methods have been used extensively for solving the calibration problem (see [63, 51]

to cite only a few). This approach is called Direct Linear Transform (DLT) [1]. A good

description of this class of methods is given in [72]. In the case of an ideal pinhole camera
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(no lens distortion), each correspondence between a 3D point P = [X, Y, Z, 1]⊤ and its image

p = [u, v, w]⊤ is constrained by Eq. (2.7). Denoting by m the vector formed by concatenating

all the row vectors of the camera calibration matrix M:

m =











m1

m2

m3











where M =











m⊤
1

m⊤
2

m⊤
3











, (2.10)

the following constraint can be derived from Eq. (2.7):











0
⊤ −wP⊤ vP⊤

wP⊤
0
⊤ −uP⊤

−vP⊤ uP⊤
0
⊤











m = 0 . (2.11)

It appears that the three equations defined above are linearly dependent, that is one point cor-

respondence leads to only two constraints on the elements of M (the first two equations for

example). The general system having 11 unknowns (5 intrinsic parameters and 6 extrinsic pa-

rameters), it can be solved with a minimum of six world points in a general position (see [25]

for a characterisation of all the degenerate configurations). In practice, it would be very inac-

curate to consider only the minimum number of points because of the noise in the extraction of

the image points, therefore a larger number of points is used and a least-squares solution can

be computed. Stacking up the previous equations, a 3n × 12 matrix A such that Am = 0 can

be defined (note that A has dimension 2n × 12 if only two linearly independent equations are

considered for each correspondence). In [63], the pseudo inverse is used to find the solution

that minimises ||Am|| subject to the constraint that the last element of m is equal to 1, while

in [72], Singular Value Decomposition (SVD) [112] is used to find the solution that minimises

||Am|| subject to the constraint that ||m|| = 1. Other constraints such as ||m′
3|| = 1, where

m′
3 is the 3-vector formed by the first three components of m3, have also been considered

in [51] for their invariance to rigid camera motion. The quantity Am minimised by these

techniques is called algebraic error [70].

It is important to note that these methods estimate the coefficient of the camera calibration

matrix, but do not provide directly the values for the camera parameters. There are various

ways to estimate these parameters. For example, [58, 51] give some analytic formulas for the

computation of these parameters. A simpler way is to apply the RQ decomposition [112],
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in order to decompose M in the form given in Eq. (2.7), from which each parameter can be

identified subsequently as in [72]. It has been shown in [67] that an algebraic distance is very

sensitive to the choice of the reference frames. In particular, this can lead to bad conditioning

of the system, and thereby poor accuracy in the evaluation of the parameters. The solution is to

apply an appropriate normalisation which guarantees that the system is well conditioned and

that optimum results are obtained. There is a vast literature on methods to compute optimally

the solution of such a system of equations [80, 67, 70, 98, 85, 100, 99, 30, 77, 31]. In general,

the closed-form solution is attractive because it is very fast to compute. One major drawback

is that it is limited to linear models, and therefore does not allow to solve for the distortion

parameters. In addition, minimising a geometric distance rather than an algebraic distance

usually leads to more accurate results.

Non-linear methods

Non-linear methods perform a direct search in the parameter space in order to find the parame-

ters which minimise an appropriate cost function. This is a classical method from photogram-

metry called bundle adjustment [127, 152]. Typically the cost function is of the form

∑

i

d(pi, K [R | t] P i)
2 , (2.12)

where d is a geometric distance or error function. The method requires the use of a non-linear

optimisation algorithm such as the Levenberg-Marquardt (LM) algorithm [112]. For example,

the Gold Standard camera calibration algorithm described in [72] uses the DLT algorithm to

compute an initial estimate for all the linear parameters, which are then refined by bundle

adjustment. Generally the minimisation can be extended to several image frames, in order to

have a larger number of correspondences and thereby improve the accuracy of the estimation

of the parameters. One nice property of this method is its generality; it is able to accommodate

arbitrary camera models, including complex lens distortion models, by simply including these

parameters into the distance function d minimised. Non-linear methods can be more accurate

than the linear ones. However because these methods require use of an iterative optimisation

algorithm, convergence to the right solution is not always guaranteed, especially if there are a

large number of parameters to optimise. In particular, there is a risk, if the method is initialised
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badly, that the algorithm will converge to a local minimum which is different from the correct

solution. These methods are also much more computationally expensive than linear methods.

Two-step methods

A good compromise consists in combining the two previous approaches: a subset of the pa-

rameters are computed using a linear method, then the remaining parameters can be estimated

using a non-linear optimisation technique. The convergence of the latter is not guaranteed if

the initial guess provided by the linear method is far from the optimum solution, in addition

it is usually slow. An algorithm with faster convergence properties is proposed in [155]. The

key idea in this paper is to use the Radial Alignment Constraint (RAC) in order to decompose

the camera parameters into two groups. The first group of parameters contains the extrinsic

parameters (except the position along the Z axis) and the scale factor and can be computed

linearly. The second group contains the effective focal length f , the radial lens distortion coef-

ficients and the position along the Z axis; the computation of these parameters require the use

of non-linear optimisation techniques, however the convergence is usually extremely fast (one

or two iterations according to [155]) because of the small number of variables. The method

presented in [155] is able to accommodate radial lens distortion, however it assumes that some

of the intrinsic parameters are provided by the manufacturer. This assumption is somehow re-

laxed in [86] where two additional intrinsic parameters are pre-computed (principal point and

scale factor).

The approach in [155, 86] is limited to radial lens distortion models because with other types

of distortions it is usually not possible to apply the RAC. A more general method was proposed

in [161]. The method separates the set of camera parameters into two sets; the first set contains

the external and internal non-distortion parameters, while the second set contains the distortion

parameters only. The procedure involves optimising alternatively the first set of parameters

(linear algorithm) while the second set is fixed, and then the second set of parameters (non-

linear algorithm) while the first set is fixed. The procedure is repeated until convergence. The

lens distortion parameters optimised are the radial distortion, the decentring distortion and the

thin prism distortion.
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Conclusions

Calibration from point correspondences is probably the best established approach for camera

calibration. A comparative review of some of the most commonly used methods is given in

[117]. This class of methods usually gives the best accuracy. The main limitation however is

the lack of flexibility, in particular the requirement of using a high accuracy calibration pattern

which is typically difficult and expensive to produce.

2.3.2 Calibration using Vanishing Points

General concept

In this section, methods using particular points called Vanishing Points (VPs), which are defined

by parallel lines, are considered. We start by introducing a few concepts of projective geometry

which are required to understand the methods. In projective geometry, any set of parallel lines

intersects in a point located infinitely far away called a Point at Infinity (PI). Mathematically,

such points are characterised by their last homogeneous coordinate which is equal to zero, i.e.

a PI can be written in the form (d⊤, 0)⊤. The set of all PI form a plane called the plane at

infinity π∞, which represents all possible 3D directions. The projection of a PI D = (d⊤, 0)⊤

is a point

v ∼ K [R | t]D ∼ KRd , (2.13)

called a VP. It can be observed from the previous equation that a VP is independent of transla-

tion of the camera. Intuitively, one can compare them to the image of stars in the sky or points

far away on the horizon, which stay fixed as an observer moves with a translational motion in

the scene. In the image plane, such points appear as the intersection of the projection of parallel

lines. Analogously, parallel scene planes intersect in a line located in the plane at infinity and

whose projection in the image is called a vanishing line. The line of intersection represents all

the directions contained in the plane.

The general idea of VP(or vanishing line)-based methods is to use the invariance of VPs to

camera translation in order to decompose the calibration into two stages. The intrinsic and

rotation parameters are computed in a first stage from the VPs only; the translation parameters

are then computed in a second stage from other known scene features (usually segments or
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points). VPs are computed directly in the image as the intersection of parallel lines [26, 159,

43, 28, 160, 12, 33, 88]. For robustness, VPs are usually computed from the intersection of

more than two lines, by minimising an appropriate criterion (see e.g. [33]). One VP provides

two constraints on the intrinsic parameters and the rotation in the form of Eq. (2.13) (three

equations minus the scale factor). Therefore with three VPs, the rotation (three parameters)

and only three of the intrinsic parameters (usually the coordinates of the principal point and the

focal length) can be computed in the first stage.

Calibration from images of sets of parallel lines

Caprile and Torre give a simple camera calibration method requiring only a cube for calibration

target in [26]. It is assumed there that the camera has no skew and that its aspect ratio is

known (for example it has been pre-calibrated). The method is based on the property that

under these conditions, the principal point is located at the orthocentre2 of a triangle with

vertices defined by the VPs of the three mutually orthogonal sets of parallel lines defined by

the cube. Once the principal point has been estimated, the focal length and then the rotation

parameters are computed in a straightforward manner from the equations defined by the VPs.

Finally, the translation parameters are obtained from the additional information provided by the

correspondences of the projection in two images of a segment of known length and orientation.

Degenerate configurations appear if one or more VP are at infinity in the image, i.e. if one or

more sets of parallel lines are parallel to the image plane.

Similar calibration methods considering images of a parallelepiped have been presented in

[159, 43, 28]. In [159], the principal point of a camera with zero skew and known aspect ratio,

is computed as the orthocentre of a triangle whose edges are the vanishing lines of the three

orthogonal planes defined by the calibration pattern. The authors also give some geometric

characterisation of the camera orientation and focal length in terms of respectively the slope of

the vanishing lines obtained and the area of the triangle previously constructed. Ultimately, they

estimate the camera position from the image of known 3D points. In [43], it is shown that, for

a camera with zero skew, known aspect ratio, and principal point (assumed to be at the image

centre), the three virtual image lines intersecting at the principal point and each going through

2The intersection of the three altitudes of a triangle is called the orthocentre.



2.3. Camera calibration 25

one of the three VPs, depend only on the rotation parameters. The method can be related

to the previous methods [26, 159] by observing that the virtual lines constructed are actually

the altitudes of the triangles previously defined. Point correspondences are used to derive the

translation and focal length after the rotation has been computed. The same invariance property

is used in [28] to compute the orientation of a camera with known intrinsic parameters, from

one image of a planar grid containing two orthogonal sets of parallel lines.

In [160], it is shown that a single vanishing line constructed from three VPs can be used to

compute the camera focal length and orientation. The three VPs are obtained from the image

of an hexagonal pattern, by intersecting parallel opposite edges. The vanishing line is then fitted

to the VPs obtained. The authors relate swing, pan and tilt angles (also the focal length) to some

geometric characteristics of the vanishing line and the VPs, such as slope, intercept with image

axis or ratio of distances. The translation parameters are obtained from the correspondence

of known scene points on the grid. The other intrinsic parameters are not computed with this

method.

Calibration from images of a plane

Another method for calibrating the intrinsic parameters of a camera is described in [12]. The

method calibrates the camera from several images of a plane taken under different viewing

angles. The main advantage compared to the previous VP-based methods is that it is not neces-

sary to ensure the orthogonality of the planes observed. The plane contains a pattern defined by

at least four points with known coordinates (no three of them being colinear), so that the planar

homography between the plane and each image can be computed. The homography is then

used to compute the vanishing line of the plane and some specific VPs on this line. It is shown

that the principal point lies on a line perpendicular to the vanishing line and going through a

particular VP (this line is actually the centre line described in [62, 61], another application in

calibration is described in Section 2.3.3). If more than two images are used, the principal point

can be estimated as the intersection of all the perpendicular lines constructed. This construc-

tion is valid for a known aspect ratio, however if it is not the case, it is still possible to use

the same procedure to calibrate iteratively the camera, initialising with a good estimate of the

aspect ratio. Other properties are used to estimate the focal length and the aspect ratio once
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the other intrinsic parameters have been computed. The method requires two or three images

of the calibration pattern, depending whether the aspect ratio must be computed or not (in all

cases the skew is assumed to be zero).

Calibration from architectural scenes

Some important applications of VP methods are in architecture, where man-made structures

such as buildings usually contain plenty of mutually orthogonal sets of parallel lines [33, 88].

An example of an interactive system for image-based reconstruction of buildings is presented

in [33]. The operator is asked to assist in the marking of mutually orthogonal sets of parallel

lines in the image, which are then used to calibrate the intrinsic parameters and the orienta-

tion of the camera under the assumption of known aspect ratio and zero skew. An additional

point correspondence is finally used to obtain a metric calibration (up to a scaling factor). The

algebraic solution proposed in [33] is mathematically equivalent to the previous methods. A

similar calibration algorithm is presented in [88]. The originality is that the authors reformu-

late VP-based calibration in terms of some properties of the Image of the Absolute Conic ω

(see next section for a formal definition). The main idea is that orthogonality is encoded by

conjugacy with respect to the absolute conic Ω∞. Then, two orthogonal VPs v1 and v2 are

conjugate with respect to ω, i.e. v⊤
1 ωv2 = 0. Similarly, it can be observed that a vanishing line

l and a VP v, respectively corresponding to a plane and a direction orthogonal to the plane, are

pole-polar with respect to ω, i.e. l = ωv. In any case, one constraint on the intrinsic parame-

ters, which can be combined with other constraints to solve for calibration, becomes available

(three such constraints arising from three orthogonal VPs are sufficient if we assume a camera

with zero-skew and known aspect ratio).

Conclusions

In summary, the main advantage of VP-based methods is that they replace the requirement of

a calibration pattern with accurately located control points on a pattern made of sets of parallel

lines, usually required to be in mutually orthogonal planes. This presents some practical ad-

vantages, especially in the case of architectural scenes. One limitation however is that VPs can

be difficult to localise accurately. For example, if the angle between the parallel scene lines and
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the image plane is small, the point of intersection of the image lines, which defines the VP, is

located far away in the image plane and usually cannot be computed accurately.

2.3.3 Calibration using the Image of the Absolute Conic

Even though it has been seen in the previous section that the use of VP can simplify calibra-

tion, parallelism and orthogonality remain strong constraints. Methods based on the Image of

the Absolute Conic (IAC) propose to relax the orthogonality constraint by allowing arbitrary

relative positioning of the planar calibration object observed. They also reformulate elegantly

the calibration problem in terms of the estimation of an imaginary geometric object.

The absolute conic Ω∞ was introduced to the computer vision literature by Faugeras and May-

bank in [50]. The conic consists of the set of points [X, Y, Z, W ]⊤ satisfying the equations

X2 + Y 2 + Z2 = 0

W = 0











. (2.14)

This conic is located in the plane at infinity and is the circle of radius i =
√
−1, which consists

purely of complex points. It is invariant under rigid motions and under uniform changes of

scale. The image of the absolute conic Ω∞ by the camera projection matrix is the conic

ω = K−⊤K−1 , (2.15)

which is also an imaginary object. It can be observed that the IAC is invariant to the posi-

tion and orientation of the camera [49]. This is a very powerful property because it results

immediately that computing the intrinsic parameters (i.e. the calibration matrix K ) is equiv-

alent to estimating the IAC ω. Once ω is known, K can be obtained from Eq. (2.15) using

for example Cholesky factorisation [112]. The IAC provides a very convenient mental repre-

sentation of the intrinsic parameters, and finds many applications in plane-based calibration

[89, 88, 175, 138, 96, 95, 62, 61] and also in auto-calibration (see Section 2.3.6).

Calibration of cameras with constant intrinsic parameters

The general principle is given by Zhang in a seminal paper on plane-based camera calibration

[175]. The main idea is to compute some particular points belonging to ω from the observation
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of a planar pattern, and then to use appropriate techniques [173] to fit a conic to these points

and recover ω. In particular, on each plane there exists two points called circular points, with

canonical coordinates I = (1, i, 0)⊤ and J = (1,−i, 0)⊤. These two points are the two points

of intersection of the calibration plane with the absolute conic. Therefore the images P and

Q of the circular points belong to ω, i.e. P⊤ωP = 0 and Q⊤ωQ = 0. In practice, these

two complex equations are equivalent, and two real constraints are obtained by isolating real

and imaginary components of either equation. Since each plane provide two such points, and a

conic is uniquely defined by five points, it is usually required to observe three planes in order to

estimate all five intrinsic parameters. If the skew is assumed to be zero, then two planes are suf-

ficient. Practically, it is equivalent to either observe several planes in a single image or to take

several images of the same plane viewed from different orientations. The different constraints

obtained are linear and a least-square solution can be found by applying techniques similar to

the linear methods described in Section 2.3.1. In [175], the author follows the calibration by

a non-linear minimisation (bundle adjustment) using LM in which it is possible to incorporate

two extra parameters accounting for the radial lens distortion. Obviously a necessary condi-

tion for plane-based camera calibration is that the planes have different orientation (otherwise

they would intersect the absolute conic in the same circular points, and the system would be

under-constrained). An exhaustive study of the singularities is given in [138].

In [96], the square calibration target is replaced by one made of one circle and a pencil of lines

passing through the centre of the circle. For each line, the VP is computed from the preservation

of the cross-ratio defined by the two intersections of the line with the circle, the centre of the

circle, and the PI of the line. All the VPs obtained in such a way are used to fit a line which

is the line at infinity of the calibration plane. The image of the circular points are found as the

intersection of this line with the image of the circle. The main advantage of this formulation

compared to the previous one is that it is not necessary to establish any correspondence between

points on the calibration target and points on its images. One drawback however is that it is

not possible to compute two of the orientation parameters (this is due to the central symmetry

of the target). Alternatively there exist other ways to estimate the circular points. [169] uses

a method similar to [175], but uses a planar pattern made of at least three concentric conics to

estimate the planar homography, and thereby the IAC. In [89] it is shown that computing two

circular points associated with one plane is equivalent to carrying out a metric rectification of
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this plane. This can be achieved in a stratified manner. In a first step the affine properties of the

scene are recovered by identifying the line at infinity from two or more sets of parallel lines.

In a second step the metric properties are recovered by using two constraints which can be a

known angle between lines, or equality of two (unknown) angles, or a known length ratio. In

this perspective, [175] is equivalent to using right angles and a ratio of one of the edges defined

by a square. Right angles are usually the easiest to use because there is an abundance of them

in man-made structures.

Calibration of zooming cameras

It has been shown in [138] that the method can be extended to zooming cameras. Two types

of zooming models are considered: i) varying focal length only or ii) varying focal length and

principal point. In [138], the zooming parameters corresponding to the model chosen result in

additional unknowns each time the zoom factor is changed. The constraints defined in [175]

can then be expressed with respect to all the unknowns (including zooming parameters) and

stacked up in a matrix in order to solve the system by similar technique. A direct consequence

of this approach is that the complexity of the system increases rapidly with the number of

images (whereas it was constant in [175]), which can lead to convergence problems. In or-

der to guarantee a good conditioning of the system, column rescaling such that columns have

equal norms is applied to the matrix containing these constraints [138]. Another issue is the

optimality of these methods, in particular it appears that the distance minimised is algebraic

and therefore is not physically meaningful. An optimal solution (in the sense it minimises the

Cramer-Rao lower bound) is proposed in [95]. However the solution is valid under the assump-

tion that only the focal length is varying (the other parameters have been pre-calibrated). An

interesting solution to avoid the increase of the dimensionality when the focal length is varied

is given in [62, 61]. The main contribution there is to show that Poncelet’s theorem can be

used to define some invariants to the focal length. In particular, it is demonstrated that when

observing a plane with known metric properties, the camera centre must lie on a circle called

the centre circle [62]. The centre circle projects onto the image plane in a line segment called

the centre line, which is the locus of the principal point. Analytic expressions for these curves

are given in [62, 61]. It is shown that the centre line is independent of the focal length and

can be used to represent a geometric cost function, whose minimisation allows computation of
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the coordinates of the principal point and the aspect ratio (it is assumed that the skew is zero).

Once these parameters are computed, focal length can be computed for each image in a simple

way.

Conclusions

The main advantage of calibration methods based on the IAC is the simplification of the ge-

ometry of the calibration pattern used from the traditional 3D grid made of control points to a

simple planar pattern which can be produced at low cost with a standard printer.

2.3.4 Calibration using other geometric entities

The two previous sections were entirely dedicated to two very important geometric entities

which are VPs and the IAC. In this section, we list a few other calibration methods based

on other useful geometric entities. The common characteristic of these techniques is that they

exploit some geometric properties of the calibration object, such as invariance, in order to

simplify the calibration process.

Lines

After using 3D objects (e.g. orthogonal planes) or 2D objects (planes undergoing an unknown

motion) it seems natural to consider 1D objects. Lines have been used in camera calibration

for different purposes [176, 40]. [176] investigates the requirement for calibrating a single

camera from a set of aligned points. In particular, it is demonstrated that it is not possible

to calibrate a single camera from a free-moving 1D object, however it becomes possible with

three aligned points separated by known distances, if one point is fixed. Camera calibration

is possible with a free-moving rigid bar carrying two markers under the requirement that at

least two cameras are observing the scene (see for example [18]). 1D calibration objects are

of major interest for the calibration of multi-camera set-ups where it is required for all the

cameras to observe simultaneously the calibration pattern, which is usually impractical with

a 2D or 3D pattern. Another application of lines is for calibrating the distortion [40]. The

method is based on the fundamental property that a camera follows the pinhole model if and
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only if the projection of every line in space onto the camera is a line. In practice, the method

minimises a cost function which measures the total distortion error in all segments in the image.

Different distortion models at different orders are accommodated by the method. The only

assumption of the method is that there exists straight lines in the scene. The idea originated in

the photogrammetry literature under the name of the plumb line method [24].

Spheres

Spheres have strong invariance properties which can be used in calibration. In [107], it is shown

that the aspect ratio of a camera can be computed from the image of a sphere. The method

is based on the observation that, because of the radial distortion, the occluding contour of a

sphere appears as a distorted ellipse, which can be approximated by a fourth order polynomial.

In practice, such a polynomial is fitted to the extracted occluding contour, and the aspect ratio

can be estimated from the coefficients of this polynomial. In [131], it is shown that spheres can

also be used to determine the principal point and the focal length. In particular, it is shown that

after correction of the lens distortion, the major axis of the ellipse representing the occluding

contour goes through the principal point, which can be determined from the intersection of at

least two images of a sphere. It is also shown that the focal length is related to some intrinsic

properties of the ellipse (eccentricity, length of the major axis and distance from the principal

point). More recently, it has been demonstrated that the IAC [144] or its dual [3] can be

computed from the outline of three spheres, from which the intrinsic camera parameters can be

estimated.

Techniques based on geometric properties of the scene increase the flexibility of the method

because they take advantage of the geometric cues present in the scene. The patterns used are

common shapes such as edges of building, or patterns produced easily by a standard printer

(planar grid).

2.3.5 Active calibration

It is shown in this section that it is possible to replace the knowledge of the geometry of the

scene by some knowledge about the motion of the camera. This class of methods is called
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active calibration. The main idea is to use some specific controlled motion in order to simplify

the computation of the camera parameters, usually by exploiting some invariance properties of

the intrinsic parameters with respect to the motion. The motion is dictated by the degrees of

freedom of the platform on which the camera is mounted. The most typical motions considered

are translation, rotation or planar motion.

Pure rotation of the camera (i.e. rotation around the optical centre) is a motion frequently

encountered in computer vision. In [131, 132], the author considers the internal calibration

of a camera mounted on a rotary stage. The method uses pairs of images separated by a pure

rotation with known axis and angle of rotation. In such circumstances, it is possible to predict

the location of the features observed in the second image from their position in the first image,

given the intrinsic parameters. An error in the intrinsic parameters results in a error in the

estimated location of the features. The intrinsic parameters can be estimated by minimising the

squared distance between the predicted and measured feature points. The parameters estimated

include the focal length, the aspect ratio, the position of the principal point and the radial

distortion. The method requires rotation around two orthogonal axes (the X and Y axis of the

camera) if all the parameters must be estimated. If it is not required to estimate the aspect ratio,

one rotation axis is sufficient. One drawback of the method is that it is necessary to adjust the

position of the camera very accurately with respect to the rotary stage in order to ensure that

the optical centre coincides with the axis of rotation.

In [10], it is shown that it is possible to compute the focal length, aspect ratio and image centre

of a camera carrying small pan, tilt and roll movement, by solving a simple linear system of

equations. The approach does not require any calibrated pattern, but uses only scenes with

stable edges. In [34], the calibration of a camera with pan, tilt and zoom motion is considered.

Similarly to [131, 132], the idea is to search for the parameters that minimise the predicted im-

age and the observed image after zooming or rotating the camera by a known angle. Repeating

this approach for a large number of zoom settings yields a look-up table of image magnification

and zoom centres, which are then linearly interpolated. After the calibration of the zoom pa-

rameters, the other parameters are recovered by generating pure translation motion around the

pan and tilt angle. Contrary to [131, 132, 10] which considered sparse features, [34] opted for

a dense optical flow approach based on image warping, which makes the method more robust

in the case of an outdoor environment.
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A method for active calibration of a camera mounted on a robot arm and observing a light spot

is presented in [134]. For each camera parameter, a controlled motion is performed (involving

either rotation or translation), which defines a cost function whose minimisation results in the

parameter value. Each parameter is estimated sequentially in this approach. The originality

of the method is that the search for the optimum value is performed directly in the 3D space,

which results in the robot doing some repetitive movements until the solution has been found.

There exist many other methods exploiting the properties derived from specific controlled mo-

tion. In addition, it is possible to combine these methods with the ones using geometric prop-

erties of the scene. For example, in [13], a stationary camera is calibrated from the images of a

planar pattern fixed on a turn table, by considering VP properties. It is shown that the locus of

the VP generated by the planar pattern is a conic section, which can be used to determine the

focal length, principal point and aspect ratio. Similarly, it is shown in [38] that a VP traverses a

conic section when the camera moves with an arbitrary translation and a fixed axis of rotation.

Active camera calibration methods use properties of controlled motions to calibrate a camera

without requiring any accurate calibration grid. These methods should be considered every

time the camera is mounted on an active device possessing the appropriate degrees of freedom

to generate the motion required. One limitation of these methods however is that they depend

on the assumption that the device on which the camera is mounted is able to generate a known

motion. Deviations from the expected motion will usually affect the calibration accuracy.

2.3.6 Auto-calibration

All calibrating methods presented so far exploit some knowledge about either the structure

(geometry) of the scene or about the relative motion between the scene and the camera. In

either case, the task is onerous because of the requirement of an accurate calibration pattern or

the necessity to generate accurate motions of the camera or the object. In addition, calibration

must be done before the vision tasks. Auto-calibration (also called self-calibration) relaxes all

of these requirements, by estimating the camera parameters directly from a sequence of generic

images. This offers great flexibility by allowing calibration to be done, for example, with the

same images used for the vision tasks.

It is well-known in computer vision that without any knowledge of the scene and the cameras,
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there exists a projective ambiguity in the reconstruction, i.e. if a sufficient number of point cor-

respondences are provided, it is possible to estimate the structure of the scene and the camera

matrices only up to a projective transformation (see for example [72, 48]). The main idea of

auto-calibration is to exploit the rigidity of the scene and some constraints on the intrinsic or

extrinsic parameters in order to remove this ambiguity and thereby estimate the camera param-

eters. Theoretically, the ambiguity can be removed only up to a similarity transformation, i.e.

it is not possible to compute the absolute positions and orientations of the cameras (neither the

scale of the reconstruction). In a nutshell, auto-calibration determines the intrinsic parameters

for each camera and the relative position and orientation of the cameras with respect to the first

one. It will be observed that the constraints generated are intimately related to the absolute

conic.

The original idea of auto-calibration is due to Faugeras et al. [49]. Their approach is based

on the Kruppa equations, which relate the epipolar transformation to the IAC in the case of

cameras with fixed intrinsic parameters. Geometrically, the two epipolar planes tangent to

the absolute conic give rise to two epipolar lines tangent to the IAC in each image. How-

ever, because the IAC is invariant under a rigid motion, it produces two constraints from the

correspondence of the tangents in the two images, which are represented algebraically by the

Kruppa equations. Since the IAC is determined by five parameters, three different cameras are

sufficient to solve for all the intrinsic parameters. The Kruppa equations are quadratic, there-

fore there exist multiple solutions, and their computation is usually difficult. In addition, the

Kruppa equations define constraints on pairs of images rather than the whole sequence, which

results in weaker constraints and more ambiguities.

A second approach to auto-calibration is stratification. In [47], the world is described as a

succession of strata: projective, affine and Euclidian (or metric). In this framework, auto-

calibration is broken down into two steps. In the first step, affine properties are recovered from

an initial projective reconstruction by identifying the plane at infinity, while the second step

consists in recovering the Euclidian properties via the identification of the absolute conic. The

most difficult task among the two is usually to identify the plane at infinity. Pollefeys and Van

Gool define a constraint called themodulus constraint which can be used for this purpose in the

case of a camera with fixed intrinsic parameters [109]. The constraints are non-linear, however

the number of unknowns involved is limited to three, which simplifies their estimation. The
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recovery of the metric properties follows from the constraint that the IAC should be the same

for all views. This results in linear equations.

A third approach is based on the absolute dual quadric [151]. The absolute dual quadric is the

quadric represented by the 4× 4 matrix:

Q∗
∞ =





I 0

0
⊤ 0



 . (2.16)

Geometrically it consists of the planes tangent to Ω∞. The advantage of using the absolute

dual quadric is that it encodes both the plane at infinity and the absolute conic at the same

time. The dual absolute quadric projects into the Dual Image of the Absolute Conic (DIAC)

ω∗ = ω−⊤ = KK⊤. As with the absolute conic, the dual absolute quadric is fixed under a rigid

motion of the camera. This property, in addition to some constraints on the intrinsic parame-

ters, can be used to compute the camera parameters. Depending on the type of constraints on

the intrinsic parameters (e.g. known principal point, zero skew, known aspect ratio, constant

intrinsic parameters...), the constraints obtained are either quadratic or linear.

The early auto-calibration methods considered only the calibration of cameras under the as-

sumption of constant intrinsic parameters. It is however possible to auto-calibrate a camera

with less restrictive constraints, using for example only the zero-skew assumption [109]. Auto-

calibration may look like an attractive solution, however one criticism is the lack of stability

of the method. Usually a good initialisation is required, and even though it is the case, conver-

gence is not always guaranteed (see [20] for an evaluation of self-calibration). In addition, there

exist some critical motion sequences for which the solution is ambiguous. A taxonomy of the

different critical motion sequences is given in [135], in the case of constant intrinsic parameters,

and in [137], in the case of zooming (variable focal length) cameras. In practice some impor-

tant cases of critical motion sequences occur for orbital motion, planar motion, pure translation

or rotation. Examples of algorithms for auto-calibration of a rotating camera are given in [66]

in the case of constant intrinsic parameters, or in [122, 2] in the case of zooming cameras. The

case of a camera undergoing a translation or planar motion are treated respectively in [97] and

[7]. In addition, it is interesting to note that Triggs proposed an auto-calibration method from

images of a plane [150].
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2.4 Conclusion

There exists a multitude of camera calibration techniques. From the most constraining ap-

proach requiring accurately located features in the scene, to auto-calibration which on the con-

trary does not require any information about the structure or the motion of the camera, a very

rich collection of methods has been encountered. Some of them are based on geometric prop-

erties of the scene, while others focus on specific motions of the camera. There is usually a

trade-off between accuracy and flexibility of the methods. For example if auto-calibration is

the most flexible technique, it is also the least stable and accurate, while methods based on

point correspondences remain the most trusted techniques when high accuracy is required.

Many methods have one common characteristic: the use of invariance properties. Invariance

properties can for example be defined with respect to some geometric entities or with respect

to some specific camera motions. The geometric entities involved can be concrete objects such

as points, lines or spheres, but also imaginary objects such as the absolute conic or the absolute

dual quadric used in auto-calibration. Invariants allow decoupling of the camera parameters and

define constraints on subsets of the parameters. This is a powerful property because it implies

reduction of the number of unknowns solved simultaneously. The rest of this part of the thesis

investigates how invariants can be applied to increase the accuracy of camera calibration.
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Calibration of a translating camera

using Points at Infinity

3.1 Introduction

The key idea developed in this chapter and the following one is that invariants can be used

to increase the accuracy of the camera calibration process. It has already been observed in

the previous chapter that specific geometric entities (real or even imaginary) and also specific

motion sequences exhibit some invariance properties which can be used during camera calibra-

tion. In this perspective, this chapter presents a novel camera calibration method based on the

invariance properties of Points at Infinity (PI) to decouple the translation component from the

other camera parameters. It also gives some insight into the influence of the use of invariants

on the accuracy of the estimation of the camera parameters in the case of this novel method.

There are two main motivations for decoupling the translation parameters from the other cam-

era parameters. Firstly, decomposition in the parameter space leads to simpler sub-problems.

Secondly, if the translation parameters are decoupled from the others, data from additional im-

ages obtained by translation does not introduce additional parameters to the problem. That is,

the data size can be increased, and thereby estimation accuracy, without increasing the problem

dimensionality. The idea of parameter decomposition has been used in other areas of computer

vision. In [8], it was shown that for two collections of 3D points related by a rotation and trans-

37
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lation the estimation of the motion can be decoupled based on the properties of the centroid. A

similar problem for 2D motion projections is described in [74] and [115]. In the case of mo-

tion estimation from line correspondences, the direction of lines has been used to compute the

rotational part of the transformation [9]. Additionally, work on shape matching has considered

the decomposition of rotation and translation for a 2D transformation of planar shapes [4].

Our approach presents some similarities with previous methods based on Vanishing Points

(VPs) [26, 159, 43, 28, 160, 12, 33, 88]. VPs have strong invariance properties, however, there

are usually not many in images and they are difficult to compute. Even if considerable effort has

been directed towards their estimation [123], existing VP-based calibration methods usually

require pairs of parallel scene lines to define VP location. In contrast, our approach computes

a Point at Infinity (PI) from known single straight lines in the scene, and formulates a novel

constraint which relates single line orientation to the projections of the PI. Thus, equations

linking scene and image data can be expressed independently of translation. Methods that use

lines for the estimation of motion and structure have been previously considered in [90, 162].

A discussion of the advantages of the use of lines in terms of accuracy in measurements is

given in [162]. If orientation of lines can be more accurately and reliably measured than point

location, then this results in more accurate features. In an implementation, straight lines can

be defined by edges in the scene or by pairs of points; generally their number exceeds the

number of parallel scene line pairs or usable distinguished image points (such as corners) that

are necessary for many other calibration methods.

In Section 3.2, the use of PI in the inverse image formation problem is considered and an

invariant for the equations linking the coordinates of 3D points and their projections is defined.

Section 3.3 formulates the two stage camera calibration procedure based on this invariant.

Finally experimental results with synthetic and real data are discussed in Section 3.4.

3.2 Inverse image formation and Points at Infinity

It is assumed in this chapter that image formation is modelled by a standard pinhole camera

as described in Eq. (2.7). For generality all the intrinsic parameters are included in the model,

i.e. the camera matrix is of the form described in Eq. (2.5). The equation mapping a 3D scene
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point P i = (X, Y, Z, 1)⊤ to the corresponding 2D image point pi = (u, v, 1)⊤ under such

conditions is summarised below

pi ∼ K [R|t]P i , with K =











f −f cot θ u0

fr/ sin θ v0

1











. (3.1)

Many approaches to camera calibration have been described in the previous chapter. The ma-

jority of the methods, including the Gold Standard algorithm described in [72], use point-

based information and simultaneously estimate all the parameters by minimising a functional

of the form described in Eq. (2.12). This cost function can be generalised to a sequence of

images by extending the sum to all the images. The resulting cost function is called the re-

projection error, and its minimisation leads to the Maximum Likelihood (ML) estimate under

some standard hypotheses on the noise distribution (measurement errors are Gaussian, see

e.g. [72], pp 86–87). When camera motion is considered, the solution can involve a large

number of parameters. However, if invariants are used, it can be simplified such that the min-

imum depends only on a subset of the parameters. For example, VPs can be used to decou-

ple the camera position from the other parameters. Contrary to previous methods using VPs

[26, 159, 43, 28, 160, 12, 33, 88], the decomposition method proposed here does not require

a calibration pattern containing parallel lines, but can be implemented from arbitrary lines or

pairs of points in a known scene. The only requirement for our method is that the directions

defined by the lines or pairs of points are known.

It has already been observed in the previous chapter that the projection of a PI in an image

is a VP, and that an important property VPs is that they are independent of camera trans-

lation. PI are defined by the direction of straight lines in the scene. If a pair of points

P i = (Xi, Yi, Zi, Wi)
⊤ (Wi 6= 0) and P j = (Xj , Yj , Zj , Wj)

⊤ (Wj 6= 0) is considered,

the direction of the line (P iP j) is represented by the PI Dij = WiP j −WjP i, which can be

written in the form Dij = (d⊤
ij , 0)⊤, where dij is the vector formed by the first three compo-

nents of Dij . The projection of Dij into the image defines a VP vij ∼ K [R|t]Dij = KRdij

which is translation invariant. Since KR can be interpreted as an homography, and an homog-

raphy preserves collinearity, vij must lie on the line (pipj) (see Fig. 3.1), that is l⊤ijvij = 0,

where lij ∼ pi×pj is the homogeneous representation of (pipj). With the notation H = KR ,
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Figure 3.1: Projection of a pair of 3D points in an image. The pair of 3D points (P i,P j) defines a

direction which is represented by a point Dij in the plane at infinity π∞. This point projects into a VP

vij which is constrained to lie on the image line passing through pi and pj .

the following equation independent of the translation is obtained:

l⊤ijHdij = 0 . (3.2)

Thus the minimisation problem originally defined in Eq. (2.12), in terms of the distances be-

tween observed and estimated points, can now be reformulated in terms of the distance between

observed image lines and their corresponding estimated VP, by minimising the cost function

defined below

∑

i,j

d(lij , Hdij)
2 . (3.3)

In this equation, d denotes the distance between observed and estimated points. This general

notation is deliberate; it will be seen next that different expressions can be considered for this

distance, thus defining different cost functions. It is important to note that such cost functions

involve only intrinsic and orientation parameters. Once these parameters have been determined,

the translation can be computed by considering Eq. (3.1) for known K and R matrices. As such,

the original minimisation problem can be divided into two sub-problems. The next section

shows how this decomposition can be applied in the context of camera calibration.
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3.3 Application to camera calibration

The general problem of computing all the camera parameters from one or several images related

by a translation, using a camera calibration object, is considered. The calibration object consists

either of 3D lines with known directions, or 3D points with known coordinates (pairs of points

are used to define lines with known directions in this case). In total, the system has 8 +

3n unknowns (where n is the number of images): 5 for K , 3 for R and, for each image, 3

for t. In general, when correspondences between 3D points and their images are known, the

camera parameters can be computed simultaneously by solving for a matrix M = K [R|t]
satisfying pi ∼ MP i for each world to image point correspondence, as described previously

in Section 2.3.1. Alternatively, the results of Section 3.2 can be used to decompose the full

parameter space into two smaller sub-systems. The first one contains only the parameters from

K and R (8 parameters), whereas the second one contains the remaining parameters from t

(there are n independent systems of 3 parameters, one for each image). Thus two simpler

problems are defined:

1. Intrinsic parameters and orientation estimation: Given a set of world directions dij and

the associated image lines lij , compute a 3 × 3 full rank matrix H = KR such that

l⊤ijHdij is minimised for each (i, j).

2. Position estimation: Given a set of world to image point correspondences P i and pi, and

two known matrices K and R , compute a vector t such that pi ∼ K [R|t]P i for each i.

Note that there is no restriction on the nature of the translation motion followed by the camera.

The translation can be arbitrary, for example it does not have to be restricted to a single linear

or planar path. The only requirement is that the orientation of the camera does not change.

The 3× 3 matrix H defined in Problem 1 is the homography between the plane at infinity and

the image plane. Once H is known, K and R can be recovered by a simple RQ decomposition

[72] (p 150). However, Problem 1 is different from a simple homography estimation problem.

Namely, there exists no strict correspondence, but only a constraint that establishes that a VP

should lie on the image line. This is fundamentally different to other camera calibration meth-

ods that propose computing the VP from parallel lines before estimating the camera parameters
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[26, 159, 43, 28, 160, 12, 33, 88]. It should also be noted that the equations defined in Prob-

lem 1 are similar to the estimation of the fundamental matrix via the 8-point algorithm [67]. In

the case of the fundamental matrix estimation however, the solution matrix must be degenerate

to satisfy the singularity constraint (rank 2), whereas in this case a full rank matrix (rank 3) is

sought. Depending on the application, it is not always required to solve Problem 2. If required,

it can be solved in a rather straightforward manner using least-squares techniques. For this

reason the focus in this section is on solving Problem 1. The reader interested in the details of

the resolution of Problem 2 is referred to Appendix A.

3.3.1 Practicality

Problem 1 uses only the directional information contained in the scene, derived from 3D lines

with known direction, or pairs of known 3D points. One practical advantage of the decomposi-

tion method is that it can be used in situations where only directional information is present in

the scene, as for example in the case of architectural applications [33, 88], wherein directions

are defined by edges of buildings. The method is also useful in situations when one is inter-

ested only in the intrinsic parameters or in the orientation of the camera. Another advantage

over standard camera resectioning is that when multiple images obtained from a purely translat-

ing camera are used, data size is increased, without requiring to compute additional translation

parameters. Accurate calibration can therefore be done from directional information only. If

all the camera parameters are required, a full camera calibration is performed by solving both

problems sequentially. In that case, Problem 1 still uses only directional information, while

Problem 2 requires additional information, such as point correspondences.

3.3.2 Linear solution

In this section, a simple linear solution is developed. In comparison to non-linear methods,

linear methods are significantly faster and easier to implement. It should be noted that Eq. (3.2)

being structurally identical to the equation relating the fundamental matrix to image points in

correspondence in two images, similar methods can be applied. Our solution is similar to the

eight-point algorithm described in [67]. One important difference however is that the matrix H

has rank 3, while the fundamental matrix is a rank-2 matrix.
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Writing lij = (lijx , lijy , lijz)
⊤ and denoting by h the entries of H in row major order, i.e.

h =











h1

h2

h3











where H =











h⊤
1
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,

a straightforward development of Eq. (3.2) leads to the following equation which is linear in

the unknown h:

(lijxd⊤
ij , lijyd

⊤
ij , lijzd

⊤
ij)h = a⊤

ijh = 0 . (3.4)

Each direction defines one such constraint on the unknowns. From a set of n directions, a n×9

matrix A is obtained by stacking up the terms a⊤
ij defined in Eq. (3.4) for each direction. The

vector h is then computed by solving the linear system Ah = 0. The system has 8 unknowns

(H has 9 entries, but it is defined up to a non-zero scale factor), therefore a minimal solution is

obtained from 8 directions in a general position. The term general position will be clarified in

Section 3.3.4, where the degenerate configurations will be described. In the case of exactly 8

correspondences, A has rank 8 and the solution is obtained by searching for its right null-space.

The null-space being of dimension 1, the corresponding solution is defined up to a scale factor.

This is consistent with the fact that the homogeneous solution matrix H is also defined up to a

non-zero scale factor.

In practice it is best to consider a large number of correspondences in order to diminish the

influence of noise and increase the accuracy of the solution computed. The resulting system of

equations is overconstrained, and because of noise, there exists generally no solution satisfying

exactly Ah = 0. In the absence of an exact solution, an approximate solution minimising

an appropriate cost function is sought. It has been chosen here to minimise the residual error

defined by ‖Ah‖. This error has no direct physical meaning; for this reason it is sometimes

called the algebraic error, in contrast to other measures which minimise for example a geo-

metric distance (see [70]). It is necessary to enforce another constraint during minimisation in

order to avoid the trivial solution h = 0. Several constraints have been considered, however

minimisation subject to the constraint that ‖h‖ = 1 is one of the most common, and it has

been shown to produce good results in the case of other applications (see [67, 70]), and for

this reason has been also considered here. This is a standard minimisation problem and it is

well-known that its solution is the unit eigenvector corresponding to the smallest eigenvalue
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of A⊤A [67]. A simple way for computing this eigenvector is for example the Singular Value

Decomposition (SVD) algorithm [112]. The method is summarised in Algorithm 1. It should

be noted that when a large number of correspondences is considered, A has a very large number

of rows, and it may not be possible to carry out the SVD due to memory limitations. A simple

solution is to replace the original system of linear equation Ah = 0, by the system of normal

equations A′h = 0 with A′ = A⊤A, which has dimension 9× 9. These two systems are math-

ematically equivalent, however in practice the second implementation is preferred because it

has a constant complexity and memory requirement.

Algorithm 1 Basic linear computation of KR

1. For each world direction dij and the associated image line lij , compute the vector aij

defined in Eq. (3.4).

2. Stack up all the vectors aij into a single n× 9 matrix A.

3. Compute the SVD of A (or A⊤A if considering the normal equations). After decompo-

sition, the matrix is written in the form A = UDV⊤, where U and V are two orthogonal

matrices and D is a diagonal matrix with positive diagonal entries, arranged in descend-

ing order down the diagonal. h is given by the last column of V .

4. H = KR is obtained from h.

Normalisation

It has been proven in a recent stream of work [80, 67, 70, 98, 85, 100, 99, 30, 77, 31] that

without an appropriate normalisation scheme, algorithms minimising an algebraic distance are

usually bound to perform poorly. In this section, similar considerations are applied to the novel

linear calibration method developed. We chose to apply a similar normalisation strategy as

the one described in [67]. Other techniques in agreement with more recent publications could

have been considered, however the technique chosen has the advantage of being simple to

implement, and lead to very good results for our application. Given the similarity between the

equations defined in Problem 1 and the ones defined for the fundamental matrix in [67], many

of the results demonstrated there apply directly to our case, and will therefore not be proven
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again in this section.

Ideally, the result of the camera calibration should be independent of the choice of the coordi-

nate system (origin and scale) for each image. However, it has been shown in [67, 70] that this

is not the case, and that in practice some reference frames will give better results than others.

The difference in accuracy observed can be attributed to the numerical condition of the system

of equations involved. The aims of the normalisation are therefore: i) to eliminate the unde-

sirable effects due to the arbitrary choice of the origin and scale for measuring the data, ii) to

improve the numerical stability of the algorithm used to solve the system.

Mathematically, a change of coordinate system is equivalent to applying a similarity transfor-

mation to the input data. For this reason, two homographies are considered in order to represent

the possible transformations. The first homography T affects the image data, transforming the

end-points pi of each image segment into p̃i ∼ Tpi, or equivalently transforming the image

lines lij ∼ pi×pj into l̃ij ∼ p̃i× p̃j ∼ T−⊤lij . The second homography T ′ affects the scene

data, transforming the PI dij into d̃ij ∼ T ′dij . Denoting by H and H̃ the matrices defined in

Eq. (3.2) respectively before and after transformation of the input data, we can write that

(p̃i × p̃j)
⊤H̃d̃ij =

[

T−⊤(pi × pj)
]⊤

H̃T ′dij = (pi × pj)
⊤T−1H̃T ′dij = 0 ,

and it results that H = T−1H̃T ′. This shows that there exists a one-to-one correspondence

between H and H̃ . However, it has been shown in [67] that these solutions do not give rise to

the same error subject to the constraint ‖h‖ = ‖h̃‖ = 1. In fact the smallest unit eigenvector

for the first equation matrix A is usually not an eigenvector for the other equation matrix A′.

This means that the solution obtained is expected to vary according to the reference frame

chosen. The question that then naturally arises is which transformations to apply in order to

define a canonical frame where the results are optimal.

To answer this question it is necessary to consider numerical stability. Our linear method com-

putes the unit eigenvector corresponding to the smallest eigenvalue of A⊤A. It has been shown

in [67, 60] that the accuracy of the computation of this eigenvector is related to the condi-

tion number of the system matrix, which is defined as the ratio of the largest to the smallest

eigenvalue. In order to reduce the sensitivity to small perturbations, and thereby increase the

accuracy of the computation of the eigenvector, the condition number must be made as close

to unity as possible. After observing that the major reason for poor conditioning of A⊤A is
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the lack of homogeneity in the input data used to construct this matrix, Hartley shows that

there exists a simple strategy based on translating and scaling the input data. Because of the

similarity of the two problems, it is possible to adopt a similar normalisation scheme, which is

described below.

The end-points of the image lines with homogeneous coordinates (x, y, w)⊤ can be treated

exactly like the input points described in [67], i.e. they are normalised such that they satisfy
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∑n
i=1 x2

i = 1
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i=1 y2

i = 1 ,

∀i wi = 1 .

(3.5)

In practice, such a normalisation is achieved by first translating the end-points such that their

centroid is at the origin, and then scaling them such that their two principal moments are both

equal to unity. After transformation, the data forms a circular cloud of points of average radius

one about the origin. Alternatively, the normalisation could have been applied directly to the

coordinates of the image lines l, however this requires a different normalisation method, like

the one proposed for d, because the last coordinate of l is not guaranteed to be non-zero (see

next paragraph).

In the case of d = (U, V, W )⊤, it is also possible to make an analogy with the input points

considered in [67], however the major difference is that the set of points is not guaranteed to

be bounded in this case. In particular, the PI corresponding to lines parallel to the XY plane

are of the form (U, V, 0)⊤, i.e. they are located at infinity. Thus, the previous normalisation

framework is no longer possible, because concepts such as the centroid are not defined or would

have too large values. To address this limitation, PI are transformed such that they satisfy
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∀i U2
i + V 2
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i = 1 .

(3.6)

This can be achieved by first translating and scaling the data in order to satisfy the first two

equations, then normalising each point so that their norm is one, and iteratively repeating these

two procedures until convergence. In practice, convergence is obtained after only a few itera-

tions. This normalisation scheme was suggested in [72] for application in the case when some

of the points are at or near infinity.
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The whole procedure is summarised in Algorithm 2. In practice, experimental results with

the image of a synthetic grid used for calibration in Section 3.4.1 showed a reduction in the

condition number of the matrix of normal equations A⊤A from 6.7 × 107 to 12.5, when data

normalisation is carried out. This confirms that the normalisation scheme adopted is appropri-

ate.

Algorithm 2 Normalised linear computation of KR

1. Normalisation of l: Compute a similarity transformation T , consisting of a translation

and scaling, that takes the end-points points of the line segments lij to a new set of end-

points centred at the origin (0, 0)⊤ and such that the two principal moments are equal to

unity. Compute the coordinates of the normalised line-segments l̃ij (alternatively apply

the same normalisation as for d directly to the line coordinates l).

2. Normalisation of d: Compute a similarity transformation T ′, consisting of a transla-

tion and scaling, that takes the points dij to a new set of points d̃ij with homogeneous

coordinates (Uij , Vij , Wij) satisfying Eq. (3.6).

3. Linear solution: Apply Algorithm 1 to the set d̃ij ↔ l̃ij to obtain Q̃ .

4. De-normalisation: Set H = T−1Q̃T ′.

3.3.3 Minimisation of a geometric distance

The linear solution is computationally attractive. However, it presents some limitations such

as the non-invariance to the coordinate reference frame, which required to introduce normal-

isation. Another criticism of this method is that the algebraic distance it minimises has little

physical meaning. In this section, a non-linear method which minimises a geometric distance

is introduced.

The geometric distance dgeom from a VP v with homogeneous coordinates (u, v, w)⊤ (w 6= 0)

to the corresponding line l with homogeneous coordinates (a, b, c)⊤ is defined as the shortest

distance from a point to a line in the image plane, and is given by the following standard result

from geometry:

dgeom(v, l) =
1√

a2 + b2

∣

∣

∣a
u

w
+ b

v

w
+ c

∣

∣

∣ . (3.7)
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Direct minimisation of the sum of squared geometric distance can lead to inaccurate results

because some individual measurements with large uncertainties may corrupt the overall sum.

There are two main situations in which large uncertainties are expected. The first case is when

short image segments are observed; in this case, starting point and end point are so close that

the computation of the line coordinates is usually inaccurate. The second case is when the scene

direction observed is nearly parallel to the image plane; in this case the corresponding VP is

located near infinity and therefore far away from the observed image line. In both cases, the

computation of the point-to-line distance is inaccurate because either the line or the point have

large associated uncertainties. It is proposed here to evaluate the uncertainty in the computation

of the geometric distance associated with each pair (lij , dij), in order to compute a weighted

sum of squared distances.

The overall uncertainty can be represented by the covariance matrix of the vector of geometric

distances. In order to simplify the estimation of the covariance matrix, we make the following

assumptions:

• Image lines are defined by their end-points, and the (x, y) coordinates of each end-point

follow independent Gaussian distributions centred at the true end-point coordinates and

with standard deviation σ for each coordinate,

• Scene directions are represented by pairs of 3D points whose coordinates follow inde-

pendent Gaussian distributions centred at the true 3D point coordinates and with standard

deviation σ′ for each coordinate,

• Errors in pairs of image lines and 3D directions in correspondence are assumed indepen-

dent.

Because the errors in the inputs defining the different pairs (lij , dij) are independent, the error

in the geometric distance corresponding to this pair can be represented by its variance or by its

standard deviation σgeom. The geometric distance can therefore be corrected by multiplication

by the inverse of the standard deviation σgeom. The cost function to be minimised is the sum of

squared distances defined by:

∑

i,j

1

σ2
geom

dgeom(vij , lij)
2 . (3.8)
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This is comparable to the Mahalanobis distance. Its minimisation should lead to an optimum

solution which takes into account the distribution of errors present in individual geometric

distances.

We must now determine σgeom for a given pair of image lines and VP. The distribution of dgeom

depends on both the distribution of l and v. We first show that under the assumptions made, all

VPs have the same associated covariance and therefore only the covariance in the image lines

l needs to be considered. VPs are related to points at infinity d by the relation v = Hd. This

defines a linear relation. However we know that all the 3D directions have the same covariance

because of the assumptions made. It results immediately from the linearity of the previous

relation that all VPs also have the same covariance.

Given an image line with coordinates l = (a, b, c)⊤ and a VP with coordinates v = (u, v, w)⊤,

we compute an approximation of the variance of dgeom(v, l) using error propagation as de-

scribed in [72] (pp 123–125). Each coordinate of the end points pi = (xi, yi, 1)⊤ and pj =

(xj , yj , 1)⊤ of the observed image segment l are independent variables following a Gaussian

distribution centred at the exact location of the end point, and with standard deviation σ, there-

fore it can be shown that a first-order approximation of the variance of the distribution of

dgeom(v, l) is:

σ2
geom = JΣJ⊤ , (3.9)

where

Σ = σ2
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and
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Σ is the covariance matrix of the distribution of the image lines and J is the Jacobian matrix of

the transformation mapping an image line and VP to a geometric distance, evaluated at (v, l).

The details of the computation are given in Appendix B.

The distance dmah is non-linear. A solution can be computed by using standard non-linear min-

imisation algorithms, such as the Levenberg-Marquardt (LM) algorithm [112] initialised with

the result of the linear method. In practice, it has been observed that the choice of the weights
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is not very important. During the minimisation, the orientation is parameterised by a three-

vector using the Rodriguez formula, as recommended in [152]; this eliminates the problems of

singularities which can appear with other parameterisation such as Euler angles. In the param-

eterisation, the three parameters define a vector parallel to the rotation axis whose magnitude

represents the rotation angle [46].

3.3.4 Degenerate configurations

It has been seen in Section 3.3.2 that at least eight world directions dij and their associated

image lines lij in a “general position” are necessary to compute H . In this section, the term

“general position” is clarified and a comparison with the degeneracies in the case of camera

resectioning [25] [72] (chapter 21) is given. It is assumed that there are at least eight 3D

directions and their associated image lines. The general study of the degeneracies is made

in the case of a single camera, however the study generalises easily to the case of multiple

translated cameras, by noticing that translating the camera is actually equivalent to introducing

additional translated 3D lines in the scene.

Let us now suppose that there is a degeneracy. There exists two distinct rank 3 matrices H and

H ′ satisfying Eq. (3.2) for all (i, j). It results immediately from the bilinearity of Eq. (3.2) that

Hθ = H + θH ′ (where θ is a scalar value) is also a solution. However the determinant of this

matrix det(Hθ) is a real-coefficient polynomial of degree 3 in θ, thus it has at least one real

solution θ0 different from zero (if θ0 = 0, then Hθ = H , and Hθ has rank 3, which contradicts

the fact that its determinant is zero). Hθ0
does not have full rank, i.e. rank(Hθ0

) ≤ 2, because

by construction det(Hθ0
) = 0. In addition, it is clear that rank(Hθ0

) 6= 0, otherwise there

would exist a non-zero θ such that H + θH ′ = 0, i.e. H ∼ H ′, which contradicts the original

assumption that the solutions are distinct. We conclude that there exists a matrix Hθ0
which

has rank 1 or 2. According to the rank of this degenerate matrix, two types of degeneracies are

defined. Both configurations are described below. It is important to note that they can occur

for any number of 3D lines (not restricted to the minimum case of eight lines), as long as the

features are arranged according to the characteristic patterns defined below.
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Figure 3.2: The “rank 1” degenerate configuration. The 3D lines either form a Linear Line Complex

with a ray R going through the camera centre c (lines D1, D2, D3), or are parallel to a plane P (lines

D4, . . . , D8).

“Rank 1” degeneracy

A “rank 1” degeneracy occurs if there exists a ray R going through the camera centre and a

plane P , such that all the 3D lines either intersectR or are parallel to P (see Fig. 3.2). The set

of 3D lines intersecting at a common line R forms a pattern called Linear Line Complex (see

[133]). A proof of this result is now given. Given that the degenerate solution matrix has rank 1,

it can be written in the form Hθ = rd⊤, where d is a 3-vector orthogonal to the null-space of

Hθ, and r is a 3-vector in the span of Hθ. Replacing in Eq. (3.2), we obtain l⊤ijrd⊤dij = 0,

which is equivalent to l⊤ijr = 0 or d⊤dij = 0. The first case l⊤ijr = 0 means that the point

r belongs to the image line lij , or equivalently that the corresponding 3D line intersects the

ray R obtained by back projecting r. The other case d⊤dij = 0 means that the 3D line with

direction dij intersects the plane at infinity somewhere on the line d; if we call P any plane

with line at infinity d, it follows that the 3D line with direction dij is parallel to P .

“Rank 2” degeneracy

It is difficult to give a simple geometric characterisation of the “rank 2” degeneracy, but our

experience is that this configuration does not follow a simple regular structure and is rather

unlikely to happen in engineered patterns. For illustration purposes, an image of a sample

“rank 2” degenerate configuration generated with Matlab R© is shown in Fig. 3.3. The image

was generated in the following manner. Given a rank-3 matrix H and a set of directions di, an

arbitrary rank 2 matrix H2 was defined, and used to construct the set of lines li ∼ (H2di) ×
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Figure 3.3: Camera image of a sample “rank 2” degenerate configuration. Contrary to the “rank 1”

case, there is no simple geometric pattern characterising the arrangement of the 3D lines and the pose

of the camera.

(Hdi). Such features satisfy l⊤i H2di = 0, because H2di and li are orthogonal by construction.

Analogy with degeneracies in camera resectioning

It is interesting to note that there exists an analogy between these degenerate configurations

and the ones occurring in the case of camera resectioning. The degenerate configurations in the

case of camera resectioning have been studied in [25] and [72] (chapter 21). In particular, it is

shown there that the most important degenerate configurations arise when i) the points all lie

on the union of a plane and a single straight line containing the camera centre, or ii) the camera

and points all lie on a twisted cubic. It is straightforward to show that case i) is equivalent to

our “rank 1” degenerate configuration, when pairs of points are used to form lines. Computer

simulations have confirmed the hypothesis that case ii) corresponds to the “rank 2” degenerate

configuration, however it remains to prove mathematically that they are strictly equivalent.

3.3.5 Constrained camera calibration

Until now, a general projective camera has been considered. In the case of restricted cameras,

for example zero-skew, known aspect ratio, known principal point or known intrinsic param-

eters, the camera calibration is still possible by minimising either an algebraic or a geometric

error. The minimisation of an algebraic error (which leads to a smaller minimisation problem)
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can be done by defining a reduced measurement matrix as described in [70]. However it is

not always possible to estimate a restricted camera matrix with a linear algorithm. For this

reason, a geometric distance is usually preferred. The same geometric distance as in the case

of a general camera can be considered, with the difference that only the camera parameters to

be estimated must be included in the minimisation, while the other constraints are enforced.

3.4 Results

In this section, the decomposition method is evaluated with images of a calibration grid. Three

different implementations are considered: linear method minimising the algebraic distance

dalg with or without normalisation of the input data, and non-linear method minimising dmah

(no normalisation required in this case). In the implementation, the linear methods use the

SVD algorithm, while the non-linear method uses the LM algorithm. In the result graphs,

the different methods are respectively labelled decomposition (norm. linear), decomposition

(linear) and decomposition (non-linear). For comparison, the results of two additional camera

calibration methods described below are included.

Camera calibration from point correspondences [72, 70]. The procedure consists of two stages.

In the first stage, a linear solution is found by SVD; both scene and image points have been nor-

malised by applying a translation and scaling to the input data prior to SVD, as recommended

in [70]. In the second stage, a non-linear solution is found by non-linear minimisation (bundle

adjustment). The LM algorithm is used at this stage; it is initialised with the results of the

linear method. The whole camera calibration procedure is described in [72] (p 170) under the

name of Gold Standard Algorithm. The result graphs corresponding to this method are labelled

standard.

Camera calibration from VPs [33, 88]. VPs are computed from the intersection of parallel lines.

Three sets of mutually orthogonal parallel lines define three VPs which can be used to compute

the intrinsic parameters (assuming zero skew and a known aspect ratio) and the rotation. The

parameters are computed linearly using SVD. Pre-normalisation is applied to the end points

of the lines in order to guarantee good conditioning of the equation matrix [68]. Once these

parameters have been computed, the translation is recovered by considering additional point
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correspondences. The results graphs corresponding to this method are labelled vanishing or

vanishing (aspect ratio = 1). In the first case, the aspect ratio is obtained from the standard

calibration method, while in the second case the aspect ratio is not precalibrated and assumed

to be 1.

Experiments were performed with synthetic and real data. In both cases, a calibration grid

made of two orthogonal planes containing control points was used. The control points provide

the input data necessary for the standard calibration method. The input directions required

for the decomposition method are obtained by considering pairs of control points. The set of

parallel lines required for calibration from VP is obtained by least-square fitting of a line to

each set of aligned control points; this defines three sets of parallel lines which are mutually

orthogonal.

The general criterion of evaluation used is the Root Mean Squared (RMS) point reprojection

error, which is defined by ǫrep =
√

1
N

∑

i d(pi, K [R|t]P i)2. It measures how closely the

control points mapped to the image by the estimated camera matrix match the noisy input

data. In our implementation, the control points used for computing ǫrep are different from the

ones used for camera calibration. The problem with using the same set of points for both

calibration and evaluation is that it leads to biased results, because the RMS point reprojection

error is a residual error in this case, which is not a good indicator of the quality of the solution

obtained. For example, with exactly eight correspondences, the residual error is zero because

there exists an exact transformation which matches the control points to the noisy image points;

however this does not mean that the transformation estimated is accurate, on the contrary it is

more likely to be inaccurate. If more correspondences are considered, the residual error will

increase because it becomes more difficult to fit a model to the noisy data; this behaviour is

contradictory to what is expected for the accuracy. More details on this topic can be found in

[72] (chapter 4). However, the RMS reprojection error does not exhibit this behaviour when

computed with different sets of points, because points used for the evaluation are independent

from the ones used for estimation. This gives a more reliable measure of the accuracy of

the calibration methods. In practice, the points used for the computation of the reprojection

error are contained in a third plane orthogonal to the two other calibration planes used for

calibration. It should be noted that the reprojection error thus defined is different from the cost

function minimised by the non-linear decomposition method, for this reason the latter method
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may not necessarily show a reduction in the error when compared with the linear decomposition

method.

In the case of simulations with synthetic data, the ground truth values of the parameters are

available, therefore it is possible to compute another criteria called RMS estimation error. It

is defined by ǫest =
√

1
N

∑

i(xi − xi)2, where xi are the ground truth parameters, xi are the

estimated parameters, and N denotes the number of trials or repetitions of the experiment. This

criterion measures how closely the estimated camera parameters match the original noise-free

camera parameters. This measure is not available with real data because noise-free values are

not accessible in that case.

3.4.1 Synthetic data

Each plane in the synthetic grid contains 100 control points. The camera to calibrate has the

following parameters: u0 = 384 pixels, v0 = 247 pixels, f = 714.3 pixels, r = 1.167, and

θ = 90.018 ◦.

Firstly, Gaussian noise was added to the spatial coordinates of the extracted image points, in

order to study the robustness of the camera calibration method. The noise injected in both co-

ordinates is independent. This is usually a reasonable assumption when image lines are defined

by pairs of points. If lines were to be extracted directly from the image, a more complicated

model of noise would be required. In this set of experiments, a single image is considered for

calibration. The standard deviation of the noise injected in the image coordinates ranged from

0 to 1 pixel. For each noise level, the simulation was repeated 100 times, with a different seed

used for the random number generator each time, so as to guarantee statistically meaningful re-

sults. Fig. 3.4 shows the RMS estimation error for each of the camera parameters, and Fig. 3.5

shows the RMS point reprojection error, in both cases with respect to the level of the noise

injected in the image. It can be observed that the results of the decomposition method are very

similar to the other two methods. It can be noticed that the normalised decomposition method

performs better than the non-normalised method. In general, the non-linear method leads to

good results, even if the improvement over the linear methods is negligible here. The results

show that the decomposition method can accurately compute the parameters under noisy con-

ditions. The method computing VPs is not as accurate because it uses only partial information:
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only parallel direction can be used, and it is not able to estimate the skew and aspect ratio.

In a second set of experiments, the influence of the number of images used on the accuracy of

the calibration is considered. For this purpose, a sequence of 10 images separated by a pure

translation1 motion of the camera, is generated. To relate the accuracy to the number of images

considered, subsets of 1 to 8 images are randomly selected, and the camera calibration is per-

formed with the images selected. The experiments are repeated 100 times for each size of the

subset. Again, for each experiment, a different seed is used for the random number generator,

in order to guarantee statistically meaningful results. Fig. 3.6 shows the RMS estimation error

for each of the intrinsic parameters and Fig. 3.7 shows the RMS point reprojection error with

respect to the number of images considered. The noise level of the Gaussian noise was set to

σ = 1 pixel for all the experiments and no information about the translation was used. It can

be observed that the RMS point reprojection error decreases rapidly for the different methods

when the number of images increases, and it seems to converge to some asymptotic values. It

seems that the normalised method leads to more accurate results than the unnormalised one,

although the improvement is not very significant. The non-linear method seems accurate but it

does not give the expected improvement in accuracy over the linear methods. The decomposi-

tion method appears to be slightly more accurate than the other methods when the number of

images is increased.

3.4.2 Real data

A sequence of 20 images of a grid was produced with a Pulnix TMC-7DSP camera equipped

with a 6 mm lens. The calibration grid was made of three planar grids, each containing 36

control points generated by a printer, which were positioned on three mutually orthogonal

planes (see Fig. 3.9). The coordinates of the control points were verified with a measuring tape,

the accuracy is estimated to be of the order of one millimetre. The coordinates of the images of

the control points were extracted using the algorithm available in [21], which is based on the

Harris corner detector [64]. The camera is mounted on a robot arm (see Fig. 3.8) that is used to

generate a translation motion (up to the robot’s accuracy). The images obtained present some

1Note that in the case of real experiments, the translation motion will never be perfect, and therefore lower

accuracy is expected.
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Figure 3.4: RMS estimation error for each camera parameter with respect to the noise level in the case

of synthetic experiments of camera calibration from a single image. The RMS error is computed across

100 trials.
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Figure 3.5: RMS point reprojection error with respect to the noise level in the case of synthetic experi-

ments of camera calibration from a single image. The results were obtained from 100 experiments.
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Figure 3.6: RMS estimation error for each intrinsic camera parameter with respect to the number of

images considered in the case of synthetic experiments of camera calibration with a translating camera.

The noise level was fixed to σ = 1 pixel. The results were obtained from 100 experiments.
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Figure 3.7: RMS point reprojection error with respect to the number of images considered in the case

of synthetic experiments of camera calibration with a translating camera. The noise level was fixed to

σ = 1 pixel. The results were obtained from 100 experiments.

Figure 3.8: Camera mounted on the robot arm used to generate the translation motion.
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Figure 3.9: Real images used for calibration. The images are obtained by translating the camera

mounted on a robot arm.

Table 3.1: Estimated intrinsic parameters in the case of real experiments of camera calibration with a

translating camera. The results are given in the case of eight input images. For each method the mean

value and the standard deviation were obtained from 100 experiments.

u0 (pixels) v0 (pixels) f (pixels) r θ (degrees)

mean 327.4 257.1 695.2 1.107 90.17
standard

std 0.146 0.192 0.619 0.237 × 10−3 8.98 × 10−3

mean 329.5 257.5 695.4 1.107 90
vanishing

std 0.703 0.181 0.669 0.256 × 10−3 0

vanishing mean 321.0 325.4 676.9 1.000 90

(aspect ratio = 1) std 0.558 0.243 0.676 0 0

decomposition mean 326.7 258.6 696.0 1.107 90.18

(linear) std 0.203 0.513 0.444 0.251 × 10−3 6.06 × 10−3

decomposition mean 326.6 257.7 695.2 1.107 90.19

(norm. linear) std 0.194 0.400 0.459 0.233 × 10−3 5.89 × 10−3

decomposition mean 326.6 257.7 695.2 1.107 90.19

(non-linear) std 0.194 0.400 0.458 0.231 × 10−3 5.92 × 10−3

lens distortion. In this case, only the radial distortion is corrected, and a first-order coefficient

appears to be sufficient [155]. Here the lens distortion can be appropriately calibrated from

the image of lines, by requiring them to be straight. This technique is known as the plumb-

line method in the photogrammetry literature [127]; an implementation for computer vision is

presented in [40]. In the case of calibration from multiple images separated by translation of

the camera, random subsets of 1 to 8 images were selected. We made 100 trials for each subset

size. Table 3.1 shows the mean and the standard deviation of the parameter values obtained for

the different methods considered, in the case where eight images were considered. Fig. 3.10

shows the RMS point reprojection error with respect to the number of images considered.
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Figure 3.10: RMS point reprojection error with respect to the number of images considered in the case

of real experiments of camera calibration with a translating camera. The results were obtained from 100

experiments. The graph corresponding to the VP method with an aspect ratio assumed to be 1 leads to

large RMS point reprojection error of the order of 15 which are not visible in the figure.

It can be seen that the accuracy of the methods increases with the number of images. The

decomposition method and the method computing VPs (with the aspect ratio obtained from

the standard method) perform better than the method using point correspondences. With the

method using point correspondences, the size of the parameter space increases each time a new

image is included. For example, if n images are considered, then there are 8+3n parameters to

estimate (5 intrinsic plus 3 for the orientation, and 3 for the position of the camera correspond-

ing to each image). When the size of the parameter space increases, the risk of being trapped

in a local minimum increases and it becomes less likely to converge to the global minimum.

In comparison, with both the decomposition method and the method computing VPs, the size

of the parameter space remains fixed for the first stage (8 parameters). Similarly to the syn-

thetic data analysis, the linear method with normalisation is more stable than the unnormalised

solution. In the particular case where the method using VPs is provided with the aspect ra-

tio obtained from the standard method, it gives more accurate results than the other methods.

However, the method computing VPs has some limitations: i) it assumes the camera has zero

skew, ii) it requires to provide a value for the aspect ratio. Some inaccuracies are expected if

the VP method is provided with an incorrect value for the aspect ratio. For example, it can be



62 Chapter 3. Calibration of a translating camera using Points at Infinity

seen in Fig. 3.10 that the method performs poorly when initialised with an aspect ratio of one,

which is however a reasonable value for most CCD cameras. It is possible to provide a better

value for the aspect ratio, e.g. by using the non-linear standard camera calibration method, but

this requires to run another preliminary calibration algorithm.

Overall if we compare the results of synthetic and real data, it can be seen that the decomposi-

tion method usually performs better than the other methods when multiple images are used. It

can be noticed that in some cases the non-linear decomposition method is actually less accu-

rate than the linear one. From a theoretical point of view, there is no reason for the non-linear

method to be more accurate since the cost functions used are different (see introduction of this

section). Practically, the results observed are very close and the discrepancy is not significant;

they could be due to the approximations performed when formulating the non-linear cost func-

tion, to different noise conditions in synthetic and real experiments, or to some inaccuracies in

the translation motion in the case of real experiments.

3.5 Conclusions

It has been observed that it is possible to decouple the translation parameters from the other

parameters during camera calibration. The main idea is that directions in the scene are repre-

sented by PI, which project to VPs, and can be used to derive equations that are independent

of translation. This property has been used to formulate a novel camera calibration method.

Its originality consists in replacing the strict constraint that a PI maps to a VP, by a softer

constraint that establishes that a VP should lie on the corresponding image line. This new for-

mulation presents some advantages in terms of flexibility compared to standard VP methods,

because it is not required to have sets of parallel lines present in the scene.

The main advantage of the decomposition method remains its ability to split the parameter

space into two smaller sets of parameters; the first set contains the intrinsic and position pa-

rameters, while the second one contains only the translation parameters. This presents some

advantages in terms of accuracy over more conventional methods such as the Gold Standard

algorithm, which solves for all the parameters simultaneously. The advantage becomes all the

more significant when a translation motion is used to generate more data from the scene, as
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this does not imply any increase in the dimensionality of the problem, when the decomposi-

tion method is considered. This however requires an apparatus able to generate an accurate

translation motion. Deviations from the expected translation motion may affect the accuracy

of calibration.

Experimental results showed that the accuracy of the decomposition method is comparable to

other methods when a single image is considered. If several images separated by a transla-

tion motion are considered, the decomposition method performs often better than the standard

method or the method computing VPs.
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Chapter 4

The Normalised Image of the Absolute

Conic (NIAC) and its use for zooming

camera calibration

4.1 Introduction

In this chapter, the study of invariants in camera calibration is continued, defining and exploit-

ing a novel invariant in the case of a zooming camera moving freely in 3D space. The ability

to zoom is of considerable interest in computer vision, as it enables to focus on selected parts

of the scene which present higher interest, however this also requires more complex calibration

techniques. In the case of motorised zoom lenses, the relationship between the lens control

parameters and the camera parameters can be determined from the results of calibration at a

series of sampled lens settings. For example, in [142], the parameter values estimated at the

sampled positions are stored in a look-up table, from which parameters corresponding to new

settings can be derived by interpolation. Note that the principle is similar to the direct cali-

bration method used by Trucco et al. in the case of triangulation-based range sensors using

structured laser light [153]. [29] showed that this calibration process can be speeded up by

replacing the previous algorithm by an adaptive algorithm, which selects automatically which

values should be included in the look-up table based on the accuracy. Willson produced a more

compact representation by fitting a polynomial at the sampled values for each parameter [166].

65
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camera calibration

The latter technique has been reported to be accurate, however it imposes smooth variations on

the parameters, which may be too restrictive in certain cases. It has been shown in [5] that a

more general algorithm can be obtained by using neural networks.

In the previous approaches, parameter values at new settings are inferred from the values at

a sample of lens settings. For accurate results, the procedures require a dense sampling over

the range of all possible settings, which is a demanding task. In addition, even though a dense

sampling is carried out, there is no guarantee of obtaining accurate results if there exists some

discontinuities in the parameter variations. Finally, these techniques require the use of mo-

torised lenses with indexed position settings, which is not the case for all camera technologies.

Self-calibration methods relax all these assumptions by offering the possibility to calibrate the

camera directly from the same images which are used for the vision task. The concept of self-

calibration was first introduced in [49] by Faugeras et al. in the case of cameras with fixed

lens settings, and then generalised to zooming cameras by Pollefeys et al. in [111]. The ap-

proach is very attractive, however there exists a number of critical motion sequences for which

the solution is ambiguous [135, 137]. An example of a degenerate configuration which occurs

frequently in practice is the case of a rotating camera. In this case it is not possible to resolve

depth because of the absence of parallax. For this reason, specific algorithms for rotating and

zooming camera have been developed, for example in [2, 122]. Other methods have tried to

simplify the self-calibration task by reducing the number of parameters to estimate. For exam-

ple, Sturm has shown in [136] that pre-calibration can be used to model the interdependency

between the zooming camera parameters, which reduces self-calibration to the estimation of

a single parameter. Generally self-calibration techniques rely on sufficient and accurate point

correspondences, and require good initial values. Convergence problems and noise usually

limit the accuracy of such techniques (see [20]).

One of the main reasons why the calibration of a zooming camera is difficult is that it increases

significantly the number of parameters to estimate, in particular when multiple images are used

for calibration. Previous works have taken advantage of invariants to decouple the camera

parameters into simpler sub-problems and guarantee that the number of unknowns of each sub-

problem is constant. Some examples of invariants used in camera calibration include Vanishing

Points (VPs), which are invariant to translation [26, 159, 43, 28, 160, 12, 33, 88], or the Image

of the Absolute Conic (IAC), which is invariant to changes in position and orientation [89, 88,
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175, 138, 96, 95, 62, 61] (see Chapter 3 for more examples of invariants). In this chapter, the

invariance properties of the IAC are extended to include invariance to zooming, by defining a

novel invariant called the Normalised Image of the Absolute Conic (NIAC). It is shown that

the camera parameters independent of the position, orientation and zooming are determined

uniquely by the NIAC. The invariance properties are used to define a stratified method requiring

only three or four views (depending on the camera model) of a square grid in arbitrary positions.

This enables the calibration to be decoupled into three sub-problems:

1. Estimation of intrinsic parameters independent of the zoom (computed through the NIAC),

2. Estimation of focal length representing the zoom for each image (computed through the

IAC for each image)

3. Estimation of extrinsic parameters for each image.

In general, zooming imposes a large-scale non-linear minimisation which is usually unstable

and less likely to converge to the solution. This is not the case with our method for which

each of the sub-problems has small dimension, and can therefore be solve more efficiently and

accurately.

In comparison with other plane-based calibration techniques for zooming cameras [138, 62,

61], our method has the advantage of increased generality (it is not restricted to zero-skew

cameras as in [138, 62, 61]) and also better accuracy when compared to [138] which computes

simultaneously all the intrinsic parameters. Under the NIAC framework, the method presented

in [62, 61] is actually a special case of our algorithm for zero-skew cameras. Our method is the

only one which minimises an exact geometric distance. [138] minimises an algebraic distance,

which requires careful normalisation of the data, while [62, 61] defines only an approximation

of a geometric distance. In order to accommodate all types of cameras, such as zero-skew

or non-zero skew cameras, several implementations are proposed. We start by presenting the

zooming model adopted in this chapter, giving a theoretical and experimental justification for

it. Then the novel invariant is introduced. The following section shows how it can be used for

calibrating a zooming camera. Finally some results with synthetic and real data are given.
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camera calibration

4.2 Zooming camera model

The zooming camera model described in Section 2.2.3 is adopted in this chapter. With this

model, zooming is equivalent to varying only the focal length of the camera. It has been shown

by Willson in [165, 163, 166, 164] that this is not the physically most accurate model, mainly

because the principal point can exhibit significant changes in position, and also because the

optical centre can move along the Z axis while zooming. However, there are several motivations

for considering a fixed principal point. Firstly, it simplifies considerably the camera calibration

process. For example, under this assumption, it is possible to calibrate a zooming camera from

three images of a planar grid taken with arbitrary positions and orientations. Generally, a model

with varying principal point would require to observe at least two planar grids simultaneously in

order to define a sufficient number of constraints on the camera parameters. Grids consisting of

several planes are more complicated, and they are difficult to position in the scene if we would

like them to be observable from all camera viewpoints - especially in the case of a camera

moving freely in the 3D space. Second, even though this model is not the most accurate for

the computation of each individual parameter, it turns out that it is sufficiently accurate for the

computation of the overall projection matrix because the error made by considering that the

principal point is fixed is compensated by an error in the position of the camera centre. For

most applications in computer vision, it is sufficient to calibrate only the projection matrix,

without accessing each single parameter, and such a model is sufficiently accurate. Theoretical

and experimental results supporting this model are given in this section.

4.2.1 Theoretical justification

Zooming is obviously independent of the position and orientation of the camera. Therefore, we

can make the simplifying assumption that the camera is located at the origin of the world frame

and pointing along the Z axis, without loss of generality. Under this assumption, the camera

projection matrix is given by:

Mf,u0,v0
=











f −f cot θ u0 0

fr/ sin θ v0 0

1 0











.
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In a zooming camera model with varying principal point, zooming induces a variation ∆f ,

∆u0 and ∆v0 in the values of the focal length and the coordinates of the principal point. The

projection matrix becomes

Mf+∆f,u0+∆u0,v0+∆v0
=











f + ∆f −(f + ∆f) cot θ u0 + ∆u0 0

(f + ∆f)r/ sin θ v0 + ∆v0 0

1 0











,

and a point P = (X, Y, Z, 1)⊤ is projected into the image point:

p = Mf+∆f,u0+∆u0,v0+∆v0
P = Mf+∆f,u0,v0

P +











Z∆u0

Z∆v0

0











.

If we now consider a alternative zooming model where the principal point is fixed, but the

camera centre is translated by the vector [∆tX , ∆tY , 0]⊤, then the same point P projects into

the image point

p′ = Mf+∆f,u0,v0











P −











∆tX

∆tY

0





















= Mf+∆f,u0,v0
P −











(f + ∆f)(∆tX − cot θ∆tY )

(f+∆f)r
sin θ

∆tY

0











.

It can be observed that the two models are equivalent if and only if







Z∆u0 = −(f + ∆f)(∆tX − cot θ∆tY ) ,

Z∆v0 = − (f+∆f)r
sin θ

∆tY ,

which requires that






∆tX = − Z
f+∆f

(∆u0 + cos θ
r

∆v0) ,

∆tY = − Z sin θ
(f+∆f)r∆v0 .

If all scene points are located in a plane parallel to the image plane, then Z is the same for all

scene points and the two equations above can be satisfied simultaneously for all scene points,

i.e. the two models are strictly equivalent. If this is not the case, but the depth relief is small

with respect to the average depth, Z can be replaced by the average depth value, and the two

models are still equivalent up to a first order approximation.
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Figure 4.1: Displacement of the principal point while the camera is zooming. The curve is obtained

from 36 zoom settings; some estimated focal lengths have been annotated on the graph for information.

4.2.2 Experimental validation

Some experiments were carried out in order to evaluate the accuracy of the chosen model. The

camera used is a Sony DXC-9100P equipped with a Fujinon S12×5BRM-38 zooming lens

which has a 5–60 mm focal length range. This is a progressive scan camera; the resolution of

the images produced is 720× 576 pixels. The camera is mounted on a tripod, and its pose and

orientation are kept constant during the experiment, so that variations in the parameters are due

only to zooming. The camera is pointing at a calibration grid made of two orthogonal square

grids of size 420 mm. The calibration grid is located approximately 2500 mm away from the

camera. A collection of images is acquired for different zoom setting.

The position of the principal point has been determined for each zoom setting by calibrating

the camera using the Gold Standard algorithm described in [72]. It can be observed in Fig. 4.1

that the principal point describes an approximately linear motion in the image while the camera

is zooming. The amplitude of the movement is about 25 pixels along the horizontal axis and

more than 40 pixels along the vertical axis.

The experiment carried out by Willson in [165] has been repeated, including the model which

compensates the motion of the principal point by a motion of the camera centre, which had not
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been considered in [165]. Briefly, the experiment starts by calibrating all the camera parameters

for the largest zoom setting, then the zoom factor is reduced and the camera recalibrated for

each new setting, allowing only a given number of camera parameters to vary; this number is

dictated by the choice of the zoom model. For example, the simplest model consists in allowing

only the focal length to vary, while a more elaborate model includes also the two coordinates

of the principal point. For each model, the normalised Root Mean Squared (RMS) reprojection

error is computed and gives a measure of the accuracy of the model. The normalisation consists

in scaling the absolute RMS reprojection error values by the inverse of the mean radius of

the cloud of image points, for each image. Such a normalisation is necessary if we want to

eliminate the influence of the scale of the grid which varies significantly due to zooming. For

information, the mean radius of the cloud of image points is 60 pixels for the smallest zoom

factor and 168 pixels for the largest zoom factor. The minimum error obtainable is given by

performing a full calibration independently for each setting. In all cases, the calibration is done

using the Gold Standard algorithm described in [72]. The linear method is used to initialise the

varying zoom parameters, which are then refined by non-linear optimisation.

The results are shown in Fig. 4.2. It can be observed that the minimum error remains approx-

imately constant over the range of zoom variation. The model allowing only the focal length

to vary is not surprisingly the least accurate; it results in an increase in the reprojection error

by a factor of 120 over the range of zoom variation. The model which allows the principal

point to vary is the most accurate, it is able to capture most of the variations exhibited by this

camera, resulting in an error increase by only a factor of 2. With the third model where the

principal point is fixed, but the position of the camera centre is allowed to vary with the focal

length, the error increases by only a factor of 6 over the whole range of zoom variation. This

is 20 times more accurate than the model with only f varying, and is a fairly close approxima-

tion of the camera model with varying principal point. These results confirm that the motion

of the principal points tends to be compensated by the motion of the optical centre. From a

practical point of view this means that even though there may be a significant error in the esti-

mation of the parameters when assuming a fixed principal point, the estimation of the overall

camera projection matrix can be done much more accurately (20 times with this camera) be-

cause errors are compensated. This is still not as accurate as considering a variable principal

point, however it is usually accurate enough for most applications. Also, it must be considered
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Figure 4.2: Comparison of the accuracy of the different zooming camera models. The bottom graph is

a magnification of the top graph.
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that the loss in accuracy due to having a simpler model is balanced by a gain in flexibility of

the calibration method (possibility to use simpler calibration targets because fewer parameters

must be estimated) and also the possibility to define simpler invariants. The possibility to use

invariants may ultimately translate into an improvement in accuracy when multiple images are

used, which may not be observed with a more complex camera model. In some cases, the

error induced by the fixed principal point assumption may still be too large, even though only

the camera matrix is computed. In such cases, it is necessary to compute the coordinates of

the principal point for each image, in addition to the other camera parameters. This does not

mean that simpler calibration techniques assuming a fixed principal point are not useful. These

can for example be used to provide an initial estimate of the camera parameters which can be

then refined and extended to a more general camera model including varying principal point

by bundle-adjustment.

4.3 A novel invariant: the NIAC

This section defines a novel geometric entity called the Normalised Image of the Absolute

Conic (NIAC) which encapsulates the camera parameters invariant to zooming.

4.3.1 Invariance properties of the IAC

For a given focal length f , the IAC is defined by the conic coefficient matrix ωf = (KfK⊤
f )−1

or equivalently by the following equation (see Appendix C):

(u− u0)
2 +

1

r2
(v − v0)

2 + 2
cosθ

r
(u− u0)(v − v0) = −f2 . (4.1)

It appears immediately that any given IAC is centred at the principal point and that f is related

to only the scale of the IAC. Under the model defined previously, zooming therefore produces

a one-parameter family of IAC which can be parameterised by the focal length f . The effect of

varying f is illustrated in Fig. 4.3. The set of IAC obtained is homothetic (curves are related by

an expansion or geometric contraction) and concentric, with centre the principal point (u0, v0)

of the camera.
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Figure 4.3: Illustration of the transformation of the IAC while the camera is zooming. The different

IAC ωfi
are all centred in the principal point C and homothetic. It is possible to choose one of them,

for example the one with focal length 1 as a reference, that we call NIAC ω1.

Table 4.1: A hierarchy of invariants and their properties. VPs are invariant to translation. The IAC

extends the invariance properties to rotation. Ultimately, the NIAC adds invariance to zooming.

invariant motion

NIAC translation, rotation, zoom

IAC translation, rotation

VPs translation

4.3.2 The NIAC

We define the Normalised Image of the Absolute Conic (NIAC) as the IAC corresponding to

a focal length of 1. The NIAC is an imaginary conic represented by the symmetric matrix

ω1 = (K1K
⊤
1 )−1. By construction ω1 is invariant to the position, orientation and change in the

focal length of the camera. It has four degrees of freedom, corresponding to the coordinates of

the principal point (u0, v0), the aspect ratio r, and the angle between the two axis of the camera

θ.

In terms of invariant, the NIAC can be considered as the natural extension of the IAC to zoom-

ing cameras. In the hierarchy of invariants, at the bottom we have the VPs which are invariant to

translation, then the IAC which extends the invariance properties by adding rotation, and finally

the NIAC which adds the zoom invariance (see Table 4.1). Because the NIAC encapsulates all

the intrinsic parameters invariant to zooming, calibrating these parameters is equivalent to es-

timating ω1. Once ω1 is known, K1 and therefore the intrinsic parameters invariant to zooming

can be recovered from Cholesky factorisation [112].
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4.4 Application to camera calibration

Before describing the novel camera calibration method, a brief reminder of the principle of

plane-based camera calibration using the IAC is given. The main idea is to replace the compu-

tation of the calibration matrix K representing the intrinsic parameters, by the estimation of the

IAC. The absolute conic being an imaginary object, it is a priori not directly observable, how-

ever it has been shown in [175, 138] that it is possible to compute the image of two remarkable

points belonging to it from the observation of any planar calibration target. These two points

are called circular points, and we give a summary of their computation below.

4.4.1 Computation of the circular points

Let us suppose that the camera is pointing at a planar calibration target. By definition, the

circular points of this plane are the two points of intersection with the absolute conic. For

simplicity and without loss of generality, it is assumed that the calibration plane is located in

the plane Z = 0, in which case the points of intersection with absolute conic are the two points

I = [1, i, 0]⊤ and J = [1,−i, 0]⊤. Because the plane is marked with known control points,

it is also possible to compute the homography H between the calibration plane and its image,

from which we can derive that the images of the two circular points are: P = HI = h1 + ih2

and Q = HJ = h1 − ih2. Both points lie on the IAC. In the case of a camera with constant

intrinsic parameters, each image of a calibration plane provides two such points on the IAC.

A general conic is defined uniquely by five points. Therefore it is sufficient to make three

plane observations (two in the case of a zero skew camera because of the additional zero-skew

constraint) in order to obtain a sufficient number of constraints and determine uniquely the

IAC, and therefore K .

In the case of a zooming camera, it is necessary to consider a more general invariant defined

for example by the NIAC, which is invariant to translation, rotation and zoom. The calibration

algorithm can be broken into three stages. In the first stage, the invariant intrinsic parameters

encapsulated in the NIAC are computed; such parameters are the coordinates of the principal

point, the aspect ratio and the skew parameter. This is the most complicated stage of the

method. The next stages concentrate, separately for each image, first on the computation of
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the focal length, which represents the zooming effect, then on the computation of the extrinsic

parameters, i.e. position and orientation.

4.4.2 Computation of K1

The matrix K1 represents the intrinsic parameters of the camera which are invariant to a change

in position, orientation and zooming. These parameters are characterised uniquely by the NIAC

ω1 = (K1K
⊤
1 )−1. Like the IAC, the NIAC is an imaginary conic, it is therefore not directly

observable, and a special construction is needed. As for the IAC, the information is provided

by the observation of a sufficient number of calibration planes, which provide a set of pairs of

images of the circular points. However, this time there exists as many different IAC as there

are pairs of images of circular points, therefore a more elaborate strategy is needed.

We start by observing that, if the parameters from K1 are known, it is possible to define a

normalised image reference frame in which the NIAC is a unit circle centred at the origin. In

this normalised image reference frame, the camera has effectively a unit aspect ratio, zero skew,

and its principal point is at the origin. Such a reference frame is obtained by applying an image

transformation T which is composed of a shear transformation along the X axis (to eliminate

the skew), a scaling along the Y axis (to correct the aspect ratio), and a translation (to map the

principal point to the origin). The transformation obtained is parametrised by four parameters

t1,t2,t3 and t4 (t3 6= 0):

T =











1 0 t2

1 t4

1





















1

t3

1





















1 t1 0

1 0

1











=











1 t1 t2

t3 t4

1











. (4.2)

The main idea of the method is that calibration can be reformulated in terms of identifying the

unique transformation T which maps the NIAC to a unit circle centred at the origin. Because

all IAC are homothetic and concentric, T maps the set of IAC into a set of concentric circles

centred at the origin. We show that such a configuration can be characterised uniquely by the

perpendicular bisectors to the chords defined by the pairs of images of circular points on the

IAC. The result is stated below. The concept is illustrated in Fig. 4.4.
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Figure 4.4: ωf1
, ωf2

and ωf3
are three concentric homothetic conics centred at C. On each conic

ωfi
, the points P fi

and Qfi
represent the images of the circular points. They define a chord on each

conic. We assume that none of the chords passes through C and that no two chords are parallel. The

perpendicular bisectors to the chords are represented by the lines lf1
, lf2

and lf3
. In the general case

where the conics are non-circular (a), the perpendicular bisectors pass through the centre C if and only

if the chord is parallel to an axis of the conic (e.g. lf1
and lf3

). Because there exists only two axis, lf1
,

lf2
and lf3

cannot be concurrent at C. The only case where lf1
, lf2

and lf3
are concurrent at C is when

the conics are circular (b).

Result 1 Consider n (n ≥ 3) concentric homothetic conics centred at C. Take one chord

on each conic such that no chord passes through C, and no two chords are parallel. The

perpendicular bisectors to the chords are concurrent1 inC if and only if the conics are circular.

Proof If the conics are circles, it is clear that the perpendicular bisector to each chord is a

diameter, and therefore that the set of all perpendicular bisectors are concurrent at the common

centre C of the set of circles. Reciprocally, let us assume that the conics are not circles. Then

each chord must be parallel to the diameter conjugate to the perpendicular bisector (see [120],

1Three of more lines are concurrent if they meet at one point.
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p 120). However, because they are orthogonal, the perpendicular bisector and its conjugate

diameter define the two axes of the conic. It results that the chords are all parallel to one of the

axes of the conic on which they lie. The conics being concentric and homothetic, they share

the same axes. Also, because none of the chords are parallel, this defines n ≥ 3 distinct axes,

which is impossible because there can be only a pair of axes. We deduce that the conics are

circular. This completes the proof of Result 1. �

Given a pair of images of circular points P = HI = h1 + ih2 and Q = HJ = h1− ih2, with

h1 = [h11, h21, h31]
⊤ and h2 = [h12, h22, h32]

⊤, it can be shown that after mapping by T , the

equation of the perpendicular bisector is:

l = [−(d1 + t1d2),−t3d2, (m1 + t1m2 + t2)(d1 + t1d2) + (t3m2 + t4)t3d2]
⊤ , (4.3)

with






























m1 = 1
h2

31
+h2

32

(h31h11 + h32h12) ,

m2 = 1
h2

31
+h2

32

(h31h21 + h32h22) ,

d1 = h32h11 − h31h12 ,

d2 = h32h21 − h31h22 .

(4.4)

The derivation is given in Appendix D. It follows that calibrating K1 is equivalent to finding

the unique values of the parameters t1,t2,t3 and t4 for which the perpendicular bissectors l are

concurrent at the origin. Once this transformation has been estimated, the NIAC is given by

ω1 = T⊤T and the intrinsic parameters by K1 = T−1. A number of algorithms for estimating

these parameters are presented below.

Non-linear solution minimising a geometric distance

The first method proposed consists in finding the solution which minimises the sum of squared

distances dgeom between the line l defined in Eq. (4.3) and the origin for each image:

d2
geom =

[(m1 + t1m2 + t2)(d1 + t1d2) + (t3m2 + t4)t3d2]
2

(d1 + t1d2)2 + (t3d2)2
. (4.5)

In the case of a zero-skew camera, we have t1 = 0, and the previous expression simplifies to

d2
geom =

[(m1 + t2)d1 + (t3m2 + t4)t3d2]
2

d2
1 + (t3d2)2

. (4.6)
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A minimum of four images is required to determine uniquely the fixed intrinsic parameters in

the case of a general camera. With a zero-skew camera, three images are sufficient, because

t1 is already known to be zero. Minimising such cost functions requires non-linear techniques

such as the Levenberg-Marquardt algorithm. Given the very small number of unknowns, the

method usually requires very few iterations before converging. Also, it can cope with poor

accuracy initialisations. Experiments showed good convergence properties, however it is a

priori not guaranteed that there exist no local minima in the vicinity of the solution which

may affect the convergence of the algorithm to the correct solution. In practice, a reasonable

initialisation which gives good results is to choose the principal point at the image centre, an

aspect ratio of one and zero-skew. Alternatively, the method defined in the next paragraph can

be used for initialisation.

Linear solution minimising an algebraic distance

Contrary to non-linear methods, linear methods are usually simpler to implement, because they

do not need any initialisation and do not suffer from convergence problems. However, they are

usually not so accurate, because the distance minimised is not geometric and can lack physical

meaning. In this case, the following algebraic constraint is defined by requiring the origin to

lie on the line l:

[0, 0, 1]l = (m1 + t1m2 + t2)(d1 + t1d2) + (t3m2 + t4)t3d2 = 0 . (4.7)

In practice, considering this equation does not present any advantage over the previous method

because the equation remains non-linear in the case of a general camera. However, in the case

of a zero-skew camera, the unknown values u0, v0 and r are related to the entries of T by

T = K
−1
1 =











1 0 −u0

1
r
−v0

r

1











, (4.8)

and the following substitution can be carried out: t1 = 0, t2 = −u0, t3 = 1
r

and t4 = −v0

r
. It

leads to the equation

(m1 − u0)d1 +

(

1

r
m2 −

v0

r

)

1

r
d2 = 0 , (4.9)
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which appears to be linear in the unknowns r2u0, v0 and r2:

[

−d1 −d2 m1d1

]











r2u0

v0

r2











= −m2d2 . (4.10)

This equation is similar to the one obtained by Gurdjos et al. in [62, 61] using the centre-line

constraint. A least-square solution can be obtained by using for example the pseudo-inverse.

Both linear and non-linear algorithms for computing the invariant intrinsic parameters encap-

sulated in the NIAC are summarised in Algorithm 3.

4.4.3 Computation of F1

Computing F1 is a simple matter of finding the isotropic scaling factor f which maps the NIAC

into a conic passing through the images of the two circular points for each image. We proceed

as follows. Having computed K1, the system of IAC can be mapped into the system of circles

centred at the origin, which takes the form

ω′
f = F 1

f2

=











1
f2

1
f2

1











∼











1

1

f2











, (4.11)

while the transformed images of the circular points are mapped to

P ′ = K
−1
1 (h1 + ih2) = h′

1 + ih′
2 and Q′ = K

−1
1 (h1 − ih2) = h′

1 − ih′
2 . (4.12)

By requiring P ′ and Q′ to be on ω′
f , we obtain

(h′
1 ± ih′

2)
⊤ω′

f (h′
1 ± ih′

2) = 0 , (4.13)

which, after equating both real and imaginary parts to zero, leads to the two equations






h′
1
⊤
ω′

fh′
1 = h′

2
⊤
ω′

fh′
2 ,

h′
1
⊤
ω′

fh′
1 = 0 .

(4.14)

Substituting ω′
f by its expression in Eq. (4.11), and writing h′

1 = [h′
11, h

′
21, h

′
31]

⊤ and h′
2 =

[h′
12, h

′
22, h

′
32]

⊤, the two following equations are obtained:




h′
31

2 − h′
32

2

h′
31h

′
32



 f2 =





h′
12

2 + h′
22

2 − h′
11

2 − h′
21

2

−h′
11h

′
12 − h′

21h
′
22



 . (4.15)
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Algorithm 3 Computation of the parameters encapsulated in the NIAC

1. For each view of the grid, estimate the homography H =











h11 h12 h13

h21 h22 h23

h31 h32 h33











between

the calibration plane and its image.

2. For each view, precompute constants m1, m2, d1 and d2 defined in Eq. (4.4).

3. Linear solution minimising an algebraic distance:

(a) Assemble all vectors [−d1,−d2, m1d1] and all constants −m2d2 into respectively

an n× 3 matrix A and an n-vector b (where n is the number of views).

(b) Compute pseudo-inverse A+ = (A⊤A)−1A⊤.

(c) The parameters are given by [r2u0, v0, r
2]⊤ = A+b.

or non-linear solution minimising a geometric distance:

(a) If the camera skew is non negligible, find the parameters t1, t2, t3 and t4 which

minimise the sum of squared distances defined in Eq. (4.5). If the skew is negligi-

ble, set t1 = 0 and replace previous distance by the one defined in Eq. (4.6). The

parameters can be initialised from the results of the previous algorithm by setting

t1 = 0, t2 = −u0, t3 = 1
r

and t4 = −v0

r
.

(b) The solution is K1 =











1 t1 t2

t3 t4

1











, from which the parameters can be computed.
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It should be noted that the first equation is indeterminate if h′
31 = h′

32, and the second one if

h′
31 = 0 or h′

32 = 0. Both equations are simultaneously singular if h′
31 = h′

32 = 0, which

corresponds to the case where the optical axis of the camera is perpendicular to the calibration

plane. If this configuration is discarded, there exists always at least one equation and f can

be computed uniquely. If more than one equation are available, a least square solution can

be computed. In general two equations are considered, but in some instances, more may be

available, this is for example the case when several images are taken without varying the focal

length.

4.4.4 Computation of R and t

For each image, we have the following constraint on the extrinsic parameters:

[

r1 r2 t

]

∼ F−1
f K−1

1 H . (4.16)

The equality is up to a scale factor. The absolute value of the scale factor can be determined

by requiring the norm of the first two columns of the term on the right hand-side to be one

(the columns of a rotation matrix are unit vectors), while the sign is obtained by requiring

the observed object to be in front of the image plane of the camera. r3 is given by r3 =

r1×r2. The orthogonality of the matrix is usually not satisfied due to noise, but can be enforced

for example by computing the Singular Value Decomposition (SVD) of R and requiring each

singular value to be equal to one (see [154]).

4.4.5 Practical considerations

Normalisation

Normalisation is carried out before computing the homographies between the calibration plane

and the image plane. The technique employed is described in [72] and consists in normalising

world points and images points such that their centroid coincide with the origin and the average

distance from the origin is
√

2. In the case of the non-linear methods, no extra minimisation is

required. In the case of the linear method, it can be shown that weighting each term in Eq. (4.10)

by the inverse of
√

d2
1 + d2

2 produces a very good approximation of the geometric distance
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defined in Eq. (4.6), which also ensures good conditioning of the system. More information can

be found on this topic in [62, 61]. The fact that our techniques requires very little normalisation

is a strong advantage over other plane-based calibration techniques such as [138], which rely

heavily on normalisation.

Degenerate Configurations

It has been seen earlier that a minimum of three or four views of the calibration plane is neces-

sary, depending on the camera model. In addition, the three following assumptions have been

made during the discussion: i) the optical axis of the camera is not perpendicular to the calibra-

tion plane (Section 4.4.3 and Appendix D), ii) the chords defined by the pairs of images of the

circular points do not pass through the principal point of the camera (Result 1), iii) and no such

chords are parallel (Result 1). After observing that the chords are the vanishing lines of the

calibration planes observed, it is straightforward to show that ii) corresponds to the case where

the optical axis of the camera is parallel to the calibration plane, while iii) corresponds to the

case where two cameras are related by a translation and/or a rotation along an axis parallel to

the calibration plane. This characterises all the degenerate configurations.

4.5 Results

In this section, the methods presented earlier are tested and evaluated. A comparison with the

method presented in [138] is also given. When referring to these methods, the following ter-

minology is adopted: Sturm & Maybank denotes the Sturm and Maybank method described

in [138], linear NIAC (s=0), non-linear NIAC (s=0) and non-linear NIAC denote the meth-

ods based on the NIAC which minimise, respectively, an algebraic distance with zero-skew

assumption, a geometric distance with zero-skew assumption, and a geometric distance with a

general camera model (no zero-skew assumption). It should be noted that the method linear

NIAC (s=0) is identical to the method derived by Gurdjos et al. using the centre line constraint

in [62, 61]. Gurdjos et al. refer to a theorem of projective geometry (Poncelet’s theorem) to

characterise the locus of the principal point when a zero-skew camera is zooming. Although
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Figure 4.5: Real images used for calibration. Each image illustrates a different zoom setting.

this is different from the NIAC concept, both methods result in the same linear system of equa-

tions in the case of a zero-skew camera.

In all experiments, the camera is pointing at a planar calibration grid (see e.g. Fig. 4.5). The

position, orientation and zoom are varying for each frame. For each image, the homography

is computed using the Direct Linear Transform (DLT) method as described in [72], with the

appropriate normalisation. Then the different methods are applied.

4.5.1 Synthetic data

The calibration target used for simulations consists of a square grid of size 20 cm×20 cm which

contains 10×10 control points. The grid coincides with the plane Z = 0 of the world reference

frame. The synthetic camera has the following constant intrinsic parameters: u0 = 384 pixels,

v0 = 247 pixels, r = 1.167. We conducted different sets of experiments for the following

values of the skew angle: θ = 89.9 ◦ and θ = 89 ◦. In practice most cameras will exhibit

very little skew, and the skew parameter s can be identified to zero, i.e. θ ≈ 90 ◦. The focal

length is the only varying intrinsic parameters. For each frame, the focal length is assigned

a random value between 476 pixels and 1428 pixels, following a uniform distribution on this

interval. The optical centre of the camera is located on a sphere with radius 0.5 m and centred

at the middle of the calibration grid. The position and orientation of the camera is generated by
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applying the following Euler transformation. A random rotation is applied successively around

the Z axis (rotation), the X axis (precession) and finally the Z axis (nutation). The rotation

around the X axis is constrained between 30 ◦ and 70 ◦, so as to be in the optimum condition

required by the Sturm &Maybank method. Under such conditions, the grid occupies the whole

image at the maximum zoom factor. Some Gaussian noise is added in the coordinates of each

imaged control point in order to simulate image noise.

Knowing the ground truth parameter values, it is possible to compare the accuracy of the dif-

ferent methods. The evaluation criterion adopted is the RMS estimation error defined by:

ǫest =
√

1
N

∑

i(x− x)2, where x is the ground truth parameter and x is the estimated param-

eter. The RMS value is computed for each parameter, from a total of 1000 experiments. In

the case of the fixed intrinsic parameters, an absolute error is computed, while a relative error

is computed for the focal length. This is a good measure of how closely the estimated camera

parameters match the noise-free camera parameters. It was chosen not to compute the RMS

reprojection error. The main reason is that, due to the arbitrary motion of the camera, it is

difficult to place an extra calibration pattern in the scene which is visible from all viewpoints

without generating occlusions in some views. This means that, to avoid occlusions, the RMS

reprojection error would have to be evaluated on the same control points used for calibration.

In that case the RMS reprojection error corresponds to a residual error, which is well known to

be a poor measure of the quality of the solution obtained (see [72], Chapter 4). For example,

the non-linear NIAC method is expected to always lead to lower residuals because it has one

extra degree of freedom compared to the other methods and can therefore fit the data better,

which does not mean it computes more accurately the camera parameters.

Two types of experiments were carried out. In the first case, the influence of the image noise

was studied by varying the standard deviation of the spatial perturbation added to the image

feature coordinates from 0 to 1 pixel. 10 images are considered during these experiments. The

results are shown in Fig. 4.6. In the second set of experiments, the influence of the number of

image frames was considered. The image noise level was constant and set to 1 pixel during

these experiments. The results are shown in Fig. 4.7. In each case, the experiments were done

with two values for the skew angle: θ = 89.9◦ and θ = 89◦. The case θ = 89.9◦ corresponds

to a low skew, which is the case of most cameras. It should also be mentioned that in the case

of a purely skewless camera (θ = 90◦), the results obtained are similar to the case θ = 89.9◦,
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and have been omitted for this reason.

It can be observed that the error in the estimation of the parameters increases linearly with

the image noise level. The methods based on the NIAC are usually more accurate than the

Sturm & Maybank method. In the case of a small skew, the best performing methods are the

ones using the NIAC (either linear or non-linear) based on the zero-skew assumption (s = 0).

However if the skew parameter differs more significantly from zero, then the non-linear NIAC

method becomes more accurate. Similarly, when varying the number of frames, it appears that

the linear NIAC (s = 0) and non-linear NIAC (s = 0) are always more accurate than the Sturm

& Maybank method. The non-linear NIAC is usually not so accurate when a small number of

frames is considered. However, with a larger number of frames it becomes more accurate than

Sturm & Maybank, and than the other methods based on the NIAC in the case of larger skew.

The methods based on the NIAC present the following advantages compared to the Sturm

& Maybank method. Firstly they exploit some invariance properties, which guarantees that

the number of parameters estimated at each stage is small and constant, while the number of

unknowns estimated simultaneously by the Sturm & Maybank method increases linearly with

the number of images and has no bound. This presents an advantage because it means that the

complexity of the problem does not increase with the number of images considered. Secondly,

the Sturm & Maybank method is based on the minimisation of an algebraic distance, while the

methods based on the NIAC consider either a geometric distance (case of non-linear NIAC and

non-linear NIAC (s=0)) or a close approximation of a geometric distance (case of linear NIAC

(s=0)). The minimisation of a geometric distance usually leads to more accurate results that the

minimisation of algebraic distances which sometimes lack physical meaning. It appears that

the methods which rely on the zero-skew assumption (case of linear NIAC (s=0) and non-linear

NIAC (s=0)) generally produce very similar results. Closer inspection of the graph would show

that the non-linear method is slightly more accurate, but that the improvement is not as large

as expected. This suggests that the algebraic distance minimised by the linear method is a very

good approximation of a geometric distance. This is explained by the fact that the aspect ratio

is close to one. It is expected that the results of the linear method would deteriorate if the aspect

ratio differed more significantly from one. The non-linear NIAC method is the most accurate

when a significant skew is present (θ = 89 ◦) and a large number of views is considered.

In the case of smaller skew values or no skew at all, the non-linear NIAC method is usually
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Figure 4.6: Results with synthetic data. Influence of the noise. The RMS estimation error was computed

for each parameter from a total of 1000 experiments. The noise level indicated represents the standard

deviation of the zero mean Gaussian noise added to the image coordinates. 10 images were used for

calibration. The experiments were made with θ = 89.9◦ (a) and θ = 89◦ (b).
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Figure 4.7: Results with synthetic data. Influence of the number of frames. The RMS estimation error

was computed for each parameter from a total of 1000 experiments. The noise added to the image

coordinates is Gaussian with zero mean and standard deviation σ = 1 pixel. The experiments were

made with θ = 89.9◦ (a) and θ = 89◦ (b).
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Table 4.2: Intrinsic parameters invariant to zooming calibrated from the 30 real images.

u0 (pixels) v0 (pixels) r θ (degrees)

Sturm & Maybank 371.0 299.2 0.912 90

linear NIAC (s=0) 366.3 317.5 0.914 90

non-linear NIAC (s=0) 366.3 317.7 0.913 90

non-linear NIAC 364.9 316.3 0.912 90.19

less accurate than the other methods. This suggests that including the skew parameter in the

calibration penalises the method in the case of negligible skew values. Most cameras presenting

negligible skew, it is usually preferable not to include this parameter in the calibration.

4.5.2 Real data

We carried out some experiments with real data. The camera used is a Sony DXC-9100P

equipped with a Fujinon S12×5BRM-38 zooming lens which has a 5–60 mm focal length

range. The lens exhibits very low lens distortion which can be ignored during calibration. We

grabbed a sequence of 30 images of the grid shown in Fig. 4.5. The camera is hand-held, and

the zoom settings are changed manually by the person who holds the camera. Each group of

five successive images were acquired with a constant zoom setting, varying only the position

and orientation of the camera. We show in Fig. 4.5 one image for each of the six zoom settings.

We calibrate the camera using all 30 images. The values obtained for intrinsic parameter invari-

ant to zooming are shown in Table 4.2, while Fig. 4.8 shows the mean focal length computed

for each group of images acquired at constant focal length, for each method. Error bars rep-

resenting plus or minus three times the standard deviation have been added to the graphs. It

can be observed that the different methods produce consistent values. Also, it appears that

the methods based on the NIAC generally produce slightly smaller standard deviations, which

suggests they capture better the set of values expected for the focal length.

4.6 Conclusions

A novel technique for calibrating a zooming camera has been presented. The technique capi-

talises on the invariance properties of a novel mathematical object called the Normalised Image

of the Absolute Conic (NIAC) in order to simplify the calibration equations. The NIAC is a
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Figure 4.8: Results with real data. The graphs show the error bars for the estimation of the focal length

for each group of images in Fig. 4.2. Each image within a group was acquired with a fixed focal length.

The error bars represent plus or minus three times the standard deviation of the estimated focal lengths.

mathematical representation of the intrinsic camera parameters which are invariant to zooming,

translation and rotation of the camera. In practice, the NIAC can be estimated from a minimum

of three or four images (depending on the camera model) of a planar calibration grid taken

from arbitrary positions, orientations and zoom settings. The main idea consists in using the

invariance properties to decompose the calibration problem into three simpler sub-problems,

each having constant number of unknowns. Different implementations have been proposed in

order to accommodate the different types of cameras, in particular with zero and non-zero skew

cameras. Results with synthetic and real images showed that the algorithms based on the NIAC

are usually more accurate than the Sturm and Maybank algorithm [138] which estimates all the

parameters simultaneously.

An apparent limitation of the method is the assumption of a fixed principal point. Theoretical

results and experiments suggest that this is a valid assumption as long as camera calibration

consists only in computing the projection matrix, i.e. it is not necessary to estimate separately

all camera parameters. This is the case of many applications in computer vision.
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Photometric aspect:

Image-based object reconstruction

using Helmholtz Stereopsis
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Chapter 5

Background

5.1 Introduction

Image-based object reconstruction consists in inferring information on the geometry of a 3D

scene (also called structure) from a set of 2D images acquired with a camera. In contrast with

the first part of the thesis which focused on estimating the properties of the camera used, the

objective of this part is to measure geometric properties of the objects observed by the camera.

These two tasks are obviously complementary. The more knowledge about the sensor we have,

the more information about the scene it is possible to extract. The applications of image-based

object reconstruction are numerous; they include robotics, measurement for quality control,

virtual reality applications and the entertainment industry, for example the creation of special

effects in films.

Imaged-based object reconstruction has been a focus of research for more than 40 years now,

however there exists still no fully automatic system giving a satisfactory general solution to the

problem. One reason why image-based object reconstruction is such a challenging task is that

it is usually an ill-posed problem in the case of non-model based reconstruction techniques:

the solution is usually not unique and does not depend continuously on the data. To tackle this

problem, a wide variety of methods have emerged; they all attempt to regularise the problem

and make it tractable by making some assumptions. Some common assumptions simplify the

geometry of the object, by assuming for example smooth surface variations, or simplify the

reflectance properties of the object, by assuming for example a Lambertian reflectance model.

93
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Another reason why reconstruction using a camera is such a challenging task is that a camera

is a passive sensor, i.e., it does not interact with the scene, but only produces a snapshot of

the light intensities emitted by the scene. Extracting depth information from such an image

can be difficult because the intensity of each pixel is related only indirectly to the geometry

of the scene. This contrasts with active sensors which generate a signal and measure how it is

perturbed by the scene to derive geometry information; a common example of an active sensor

is the laser range scanner, which computes depth information from the measure of the time

of flight of an emitted laser beam reflecting on the object surface [154]. Active methods are

now well established, and they are typically more accurate than passive methods, nevertheless

they require complicated equipment, and can fail to detect the surface of objects with non-

Lambertian properties.

This chapter presents an overview of the main image-based object reconstruction methods. We

concentrate on automatic reconstruction techniques involving cameras - this includes active

methods which use controlled light sources, but not other active methods which project a pre-

defined pattern on the scene and for which reconstruction is more trivial. This chapter plays a

similar role to Chapter 2 in the case of camera calibration. The aim of this review is to compare

the different state-of-the-art reconstruction techniques, and motivate the choice of Helmholtz

Stereopsis (HS) as the reconstruction technique adopted in this thesis. The reader already fa-

miliar with these techniques may want to quickly read through this chapter or proceed directly

to the next one.

5.2 Conventional stereo methods

Conventional stereo techniques are inspired by the human vision system. They use two or more

images of a scene taken from different viewpoints to estimate depth. The images can be ob-

tained from a collection of fixed cameras or from a single moving camera. Two fundamental

problems can be distinguished: i) the correspondence problem and ii) the reconstruction prob-

lem. We start by describing how these problems are solved in the case of a pair of images, and

then generalise to N views.
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5.2.1 Two-view geometry

Correspondence problem

The correspondence problem consists of matching points which correspond to the projection

of the same physical scene point in each image. This appears at first sight as a very difficult

problem because a point in one image can be matched a priori with any point in the other

image. However, there exist a number of assumptions which can be made in order to make this

problem tractable. We distinguish two main classes of methods: area-based and feature-based.

Area-based methods compare intensity profiles in neighbourhoods of potential matches in order

to define correspondences. Good reviews on this topic can be found for example in [46, 45,

118]. Traditionally, a correspondence is represented by a value called disparitywhich measures

the amount of displacement between two corresponding pixels. For each pixel in the first

image, the corresponding pixel in the second image is the one which maximises a measure

of similarity between the two neighbourhoods, thus yielding a dense set of correspondences

represented by a disparity map. Commonly adopted measures of correlation are the Sum of

Squared Differences (SSD) or the normalised cross-correlation. Such measures are computed

over pixel neighbourhoods defined by generally fixed-size rectangular windows.

Area-based methods present several limitations. Firstly, the window must be large enough to

include sufficient intensity variations. Secondly, it is implicitly assumed that the area covered

by the window is not significantly distorted between the two images; if the scene exhibits

rapid depth variations, this may require to use small dimension windows. There is obviously a

trade-off between maximising the intensity variations and minimising the disparity variations

when choosing the window shape and size. A number of adaptive algorithms which are able to

adjust automatically the window to the intensity and disparity patterns have been proposed [79,

56]. These techniques have been reported to improve significantly the reconstruction, however

matching remains difficult in the case of poorly textured surfaces or non smooth objects. In

addition, the underlying assumption of area-based methods is that corresponding points have

similar intensities in the two images. This requires that: i) the intensity of the light reflected

by object surface varies slowly with respect to the direction of viewing, ii) the illumination

conditions do not vary significantly between the acquisition of the two images, and iii) the
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Figure 5.1: Illustration of the epipolar geometry. The baseline (ClCr) intersects the image planes in

two epipoles el and er. Given an image point pl in the left image, its corresponding point pr in the

right image is constrained to lie on a line passing through the epipole er and called epipolar line.

baseline (distance separating the two cameras centres) is small with respect to the distance

from the surface observed.

Feature-based methods address some of the previous limitations by considering distinguished

image primitives which present the advantage of being more stable under illumination and

view-point changes than image windows. While the earliest implementation were restricted

to small baseline (see [46]), more recently a new class of algorithms for wide-baseline stereo

have emerged [11, 113, 143, 94, 158]. The advantage of matching images separated by a wide

baseline is that it enables more accurate subsequent triangulation. The features considered by

these methods are selected for their invariance properties with respect to perspective foreshort-

ening and illumination variations. A variety of features have been considered. They are defined

for example by corners [11], segments formed by pairs of corners [143], quadrangles delim-

ited by edges [113] or regions driven by the local extremal properties of the intensity function

[94, 158]. Each feature being attributed some descriptors characterising its invariance proper-

ties, the matching problem consists in finding pairs of features which minimise an appropriate

metric in the space of descriptors. Most methods try to minimise the Mahalanobis distance,

however it has been shown in [94] that more robust metrics can be considered. One disadvan-

tage of feature-based techniques, compared to area-based techniques, is that they provide only

a sparse reconstruction of the scene.
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Epipolar geometry

Finding a correspondence would be a very time consuming task if every single pixel or feature

in the second image has to be checked for correspondence. Fortunately, there exists a simple

geometric constraint which enables to restrict the search to a single line; this constraint is

called the epipolar constraint [46, 154, 72]. The epipolar geometry is illustrated in Fig. 5.1.

In a nutshell, the epipolar geometry imposes that the two optical centres and the two image

points in correspondence must be coplanar (so that the two incoming light rays intersect in a

3D point); the plane thus defined is called an epipolar plane. Given one point in an image,

this forces the corresponding point to lie on the image line defined by the intersection of the

epipolar plane with the image plane of the other camera. Mathematically, the epipolar geometry

is encoded in a matrix called the fundamental matrix F which satisfies the equation x⊤
1 Fx2 =

0 for any pair of image points x1 and x2 in correspondence. In the latter equation, Fx2

represents the equation of the epipolar line corresponding to the image point x1, on which x2

is constrained to lie. In practice, once the fundamental matrix has been estimated, the search

for correspondences can be simplified further by applying a preliminary warping of the images

such that conjugate epipolar lines are horizontal; this process is called rectification [57].

The fundamental matrix has rank 2, it has therefore seven degrees of freedom (9 entries mi-

nus one degree of freedom for the scale factor and another degree of freedom because of the

rank 2 constraint), and can be computed from a minimum of seven point correspondences [72].

Many methods for fundamental matrix estimation have been proposed and a good review with

comparative evaluation can be found in [174]. The eight-point algorithm [67] remains a popu-

lar algorithm for estimating the fundamental matrix because of its simplicity (it is linear) and

because it performs nearly as well as more complex algorithms involving non-linear minimisa-

tion if appropriate normalisation is carried out [67, 174, 98]. The estimation of the fundamental

matrix and the matching problem are intimately related: the fundamental matrix requires point

correspondences, however point correspondences are constrained by the fundamental matrix.

Robust techniques based for example on Random Sample Consensus (RANSAC) [52] have

been considered to solve automatically the problem [147]. With such techniques, the set of pu-

tative correspondences can be re-assessed at each iteration in order to assure consistency with

the fundamental matrix estimate. It should be mentioned that in the case where the intrinsic
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parameters of the camera have been calibrated, image points can be expressed in camera coor-

dinates, rather than image coordinates, in which case the fundamental matrix takes a particular

form and is called the essential matrix E [91].

Finally, the epipolar geometry constraint is by far the most commonly used constraint in stereo

vision; however there exists a number of other geometric constraints which can be considered.

These include: continuity, uniqueness, ordering, disparity gradient constraints, etc. The reader

interested in these constraints is referred for example to [46].

Reconstruction problem

Once image points have been matched, the reconstruction problem reduces to intersecting pairs

of rays defined by the backprojection of points in correspondence. This procedure is called tri-

angulation. This task can be carried out unambiguously in the case of fully calibrated cameras,

because image points and the camera projection matrices define uniquely the incident rays that

must be intersected. This is however not the case when the cameras are partially calibrated or

uncalibrated. In particular it has been shown that the camera projection matrices and therefore

the 3D structure of the scene can be recovered only up to an arbitrary similarity transformation

in the case where only the intrinsic camera parameters are known [91] or only up to an arbitrary

projective transformation in the case of uncalibrated cameras [65].

Even for calibrated cameras, given two camera matrices and some point correspondences, the

backprojected rays will generally not meet perfectly in 3D space because of errors in the local-

isation of the matched image points and estimation of the epipolar geometry. For this reason,

it is convenient to reformulate the triangulation problem in terms of minimisation of an ap-

propriate cost function. This cost function must be invariant to the class of transformations

characterising the ambiguity in the reconstruction in order to provide meaningful results [71].

For example, although computation of the mid-point of the common perpendicular to both rays,

or computation of an optimum solution to a system of linear equations as in [65], both provide

valid results in the case of fully calibrated cameras or cameras with known intrinsic parameters,

these methods are not suitable for the case of uncalibrated cameras. For this reason, Hartley

and Sturm proposed an analytical solution, unaffected by projective transformation of the in-

put data, which minimises the sum of squared distances between image points and conjugate
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epipolar lines in each image [71].

5.2.2 N -view geometry

The accuracy of the reconstruction can naturally be improved by considering a larger number

of overlapping views of the scene, thus providing more powerful disambiguation constraints.

In particular, it has been shown that algebraic representations analogous to the fundamental

matrix in the two-view case can be defined for three and four views; these entities are called

respectively trifocal [68, 148] and quadrifocal [149, 69] tensors. With the fundamental ma-

trix, they provide very powerful tools for scene reconstruction, because they encapsulate the

multilinear matching constraints arising in two, three or four views, into a single algebraic

object. Unfortunately, there exist no generalisation of these tensors to more than four views

[149]. In many applications, a much larger number of views is considered, therefore different

reconstruction techniques must be adopted. One of the main challenges that arises then is how

to ensure consistency of the correspondences and reconstruction with all images.

Multi-baseline approaches

Okutomi and Kanade have proposed a multi-baseline approach which is able to find correspon-

dences using an arbitrary number of views separated by a lateral displacement, thus eliminating

the need for subsequent consistency enforcement [105]. The main idea is that, if the search for

correspondences is expressed in terms of scene depth estimation (or equivalently its inverse)

rather than the disparity for each pixel in a reference image, then the measure of correlation

can be extended to multiple frames by summing the SSD computed for each pair of images.

The authors report that the method results in more precise matching because the measure of

correlation presents a sharper global extremum as more baselines are added. This implemen-

tation is limited to a particular spatial configuration, however it has been shown in [101] that it

can be generalised and used successfully with a large number of non-aligned cameras. In this

work, they use a set of 51 cameras mounted on a geodesic dome of 5-metre diameter. They

first produce an initial reconstruction for each group of 3 to 6 neighbouring cameras with a

modified version of the multiple-baseline algorithm presented in [105]; the reconstructions is
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then merged into a consistent model by using a volumetric integration method. Collins pro-

posed a different technique, which can cope with a more general camera configuration [35].

In this approach, the matching problem, which was expressed so far in the image space, is

reformulated in the 3D space. Matching is carried out by sweeping a plane in the 3D space and

backprojecting all image features into this plane. Counts resulting from all image features are

accumulated and used to estimate the likelihood of a 3D feature being present at each cell in

the plane. Contrary to [105], the computational cost is linear in the number of images, however

it produces only a sparse reconstruction based on detected edges.

Structure from motion

The reconstruction of the scene from correspondences established across multiple images ob-

tained by moving a camera is called structure from motion. The most general approach to

determine structure from motion is bundle adjustment [152], which consists in estimating

the projection matrices and the 3D points which minimise the reprojection error defined in

Eq. (2.12). This approach gives a Maximum Likelihood (ML) estimate in the case of additive

Gaussian image noise, however its solution requires a large-scale minimisation for which there

is no direct solution and a starting point must be provided [72]. In the case of an affine camera,

Tomasi and Kanade developed a factorisation algorithm which has the advantages of involving

only linear equations and provides a ML affine reconstruction [146].

The approach has been generalised to projective cameras by Sturm in [139]. The algorithm

iterates between estimation of some homogeneous scale factors for each image point, and per-

forming a factorisation similar to [146] for the given scaling factors. This poses the problem of

the choice of the initialisation, and also the convergence properties of this iterative algorithm

are not clear. In addition, the algorithm no longer provides a ML estimate in this case. A general

drawback of factorisation methods [146, 139] is that they assume all points are simultaneously

visible in all images, which is usually not the case because features can become temporarily

occluded. There exist many other structure from motion algorithms (see for example [106]); in

particular, we can distinguish between batch algorithms, which process all images at the same

time, and sequential algorithms which update the structure and motion whenever a new frame

is added to the sequence.
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Many approaches do not solve the correspondence and reconstruction problems independently,

but combine them into an iterative algorithm [14, 53, 110]. In these approaches, correspon-

dence and reconstruction are first solved for sub-groups of images for which there exists mul-

tilinear matching constraints which can be computed directly, then the results are refined by

enforcing a consistency constraint within all sub-groups. For example, in [14], image pairs or

image triplets defined by consecutive frames are used to track and match image primitives and

produce sequentially a reconstruction of the scene. In [53], image triplets are also considered,

however the sequential approach is replaced by a hierarchical approach where structure and

motion are estimated first for each image triplet, which are then registered into subsequences

and finally into the entire sequence of images; registration is done by estimating 3D homo-

graphies which maximise the overlap between reconstructions. This approach presents the

advantage of distributing the errors optimally across the sequence of images. In [110], Polle-

feys et al. propose an alternative approach where two images are chosen for reference and

define the initial structure and motion, which is then updated every time a new view is added.

Hartley and Zisserman discuss the possible strategies for obtaining an initial reconstruction in

[72]. They recommend to terminate any reconstruction with a global minimisation step using

bundle adjustment. It should be mentioned finally that the techniques presented in Section 2.3.6

are particularly useful for upgrading the final reconstruction from projective to metric.

5.3 Volumetric methods

Volumetric methods eliminate some of the limitations inherent to conventional stereo tech-

niques by reasoning directly in 3D. In particular, volumetric techniques eliminate the necessity

to extract features or to have textured objects that can be matched easily. Also these techniques

can cope with arbitrary camera positions, i.e. it is not necessary to impose a small baseline

between images. With such techniques, the 3D space is usually restricted to a bounding box

enclosing the scene to reconstruct and is discretised into small elements called voxels. The

reconstruction problem can then be expressed in terms of classifying the voxels into different

states according to their properties, for example transparent (empty) or opaque (full). We dis-

tinguish two main classes of volumetric methods depending on the cue used to infer the 3D

information: shape from silhouette and shape from photo-consistency. An additional review of
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volumetric methods can be found in [124].

5.3.1 Shape from silhouettes

The main idea of this class of methods is that the result of the segmentation of the projection

of an object from the background defines a 2D shape, called a silhouette, which backprojects

into a cone tangent to the 3D object. The volume resulting from the intersection of the cones

generated by all images defines an approximate reconstruction of the observed object. The first

implementation is due to Martin and Aggarwal. In [93], they apply simple thresholding tech-

niques followed by a connected-component analysis in order to extract the object silhouette.

They represent the scene by what they call a volume segment representation and consists of a

set of line segments parallel to one axis.

Other implementations have considered a voxel representation based on octrees [140, 59]. With

these methods the 3D space is discretised into elementary volume elements called voxels. The

reconstruction task consists in labelling voxels as either opaque or transparent depending on

whether they belong to the scene objects or not. A memory-efficient representation is obtained

using octrees. The reconstruction starts at a coarse resolution with all voxels initialised as

opaque. Each voxel is projected into each image, and depending on its location within the

silhouettes, the voxels are either labelled opaque, transparent or ambiguous. Ambiguous voxels

are processed recursively at finer levels until all voxels have been classified or the required

level of accuracy has been obtained. In [140], for example, the object is placed on a turntable

which is used to generate the multiple views required for reconstruction. The camera has been

precalibrated and the turntable indexed so that the projection matrix is known for each view.

It has been shown in [59] that a reconstruction can be obtained from uncalibrated cameras. In

this paper, the authors use two cameras pointing at approximatively orthogonal directions to

define a projective sampling of 3D space. They relate each novel view to these two views by

computing the corresponding trifocal tensor, which is used to project and determine the state

of each voxel. As in [140], a hierarchical coarse-to-fine approach based on octrees is adopted.

The previous approaches used a regular discretisation of the 3D space. Such representations

are rather simple to implement, however they are computationally expensive and they lack

precision because of the quantisation effect [22]. With such techniques, high accuracy can be
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obtained only at the cost of adopting a high-resolution discretisation of space, which increases

significantly the run-time. This trade-off is overcome in [22] by adopting an irregular grid. The

irregular grid consists of tetrahedrons defined by applying Delaunay triangulation on sample

points belonging to the object surface. A final reconstruction is obtained by extracting the

surface of the visual hull.

The main limitations of volumetric techniques based on silhouette intersection are i) the in-

ability to reconstruct concavities (unless the camera can be placed near the object inside the

concavity, which is usually not the case) and also ii) the necessity to be able to segment the

object from its background. In [84], Laurentini studies these ambiguities and proposes the term

visual hull to define the best reconstruction obtainable by volume intersection techniques. The

visual hull inferred by a given number of images may not always be enclosed in the convex hull

of the object, depending on the object geometry and camera configurations, however it is guar-

anteed to contain the object, thus providing an upper bound for reconstruction. Segmentation

can be done for example by blue screen technique (chroma keying), which requires a special

laboratory setting to ensure that the object is surrounded by a uniform background with a given

colour not appearing on the foreground object. This poses a problem if the object contains a

similar colour. Alternatively, background subtraction techniques can be considered (see e.g.

[140]). These require controlled lighting condition and can suffer from shadow effects.
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Figure 5.2: Illustration of the different reconstructions obtained by shape from silhouettes (a) and shape

from colour-consistency (b) in the case of a simple object made of two red and green triangles. In both

cases the reconstruction is done from three cameras located at the positions C1, C2 and C3, and the

model obtained is represented by the union of the object and the hatched area. Shape from colour-

consistency produces a more accurate reconstruction than shape from silhouettes because it exploits the

additional colour information contained in the scene.
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5.3.2 Shape from photo-consistency

Contrary to shape from silhouette techniques which considered only a binarised version of the

images obtained by segmentation, shape from photo-consistency techniques exploit the full

photometric information contained in the images by introducing the notion of colour consis-

tency [119] also called photo-consistency [82]. A shape is said to be photo-consistent with a

set of images if, for each image in which a surface point is visible, the radiance leaving this

point is equal to the radiance measured at the corresponding pixel. Thus, consistent voxels

can be assumed to be surface voxels and attributed the colour of their projections; whereas in-

consistent voxels can be assumed to correspond to empty space and can therefore be removed

from the volume (see Fig. 5.2(b)). Starting with a 3D space with all voxels assumed opaque

and applying the consistency test in order to carve away inconsistent voxels until all the visible

voxels are colour-consistent leads to a reconstruction of the scene consistent with all the im-

ages. In analogy with the visual hull [84], Kutulakos and Seitz called the best reconstruction

obtainable, which is consistent with the set of all the source images, the photo-hull [82]. Such

a reconstruction is a more accurate approximation of the object geometry than the visual hull

because photo-consistency allows the reconstruction of concavities whenever sufficient texture

information is present on the object surface.

The determination of the visibility of the voxels is a fundamental problem. In the first im-

plementation using colour-consistency, called Voxel Coloring [119], Seitz and Dyer define a

constraint on the positions of the cameras called the Ordinal Visibility Constraint which allows

the voxel space to be topologically sorted according to the distance from the cameras. Their

approach guarantees that occluding voxels are visited before occluded voxels and thus allows

a reconstruction via a single pass through this space. Their approach is efficient, but restricted

to objects located outside the convex hull defined by the camera centres. Kutulakos and Seitz

eliminate this limitation by proposing a multi-pass extension of Voxel Coloring called Space

Carving [82]. In their implementation, they carry out near-to-far scans similar to the one in

Voxel Coloring, but repeated along each axis of the 3D reference frame in both positive and

negative direction, considering at each time only the cameras which are in front of the moving

plane for consistency evaluation. Their approach allows arbitrary camera positions, but it is not

optimal because it considers only a subset of the images for consistency evaluation, which may
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lead to a failure to carve voxels inconsistent with the entire set of cameras but consistent with

subsets of images.

Culbertson et al. address this problem by processing only the voxels whose visibility has

changed at each iteration, until convergence [37]. Their approach leads to an optimal solution

in the sense it is consistent with all images, but requires the use of complex data structures

to compute the exact visibility of the voxels. In addition, it exhibits large run-time (up to

40 min) compared to Voxel Coloring (a few seconds or minutes). Alternatively, Eisert et al.

[44] proposed a multi-hypothesis technique. In a first step, colour hypotheses are assigned to

each voxel based on their projection in the set of images. In a second step, voxels located at

the surface of the volume are checked and hypotheses inconsistent with images are removed.

Voxels with no hypotheses remaining are carved away from the volume. The procedure is

iterated until no further hypotheses can be removed, at which point there remain only voxels

having a single hypothesis, which belong to the object surface and define a reconstruction of

the object [44].

Almost all methods based on photo-consistency are based on the simplifying assumption that

the scene is Lambertian [119, 82, 37, 44], i.e. the reflectance of a surface point is the same in

all the directions. The advantage of making this assumption is that consistency takes a very

simple form because consistent voxels are expected to have the same colour in each image.

Under such an assumption consistency can be evaluated by simple thresholding of the standard

deviation of the set of projection colours [119, 82, 37, 44]. There are several limitations to this

thresholding approach. Firstly, the choice of the threshold affects directly the results obtained.

A low threshold is very selective, and there is a risk to carve consistent voxels, while a high

threshold may keep inconsistent voxels in the reconstruction. Slabaugh et al. relax this assump-

tion in [126] by using an adaptive threshold, however this still requires the user to pre-define

some thresholds. In other work, the hard limits imposed by a threshold have been replaced

by some probabilistic measures of consistency [23, 16, 171]. Secondly, and more importantly,

the Lambertian assumption is valid only for a restricted class of objects; most real objects are

not Lambertian and are likely to be very poorly reconstructed with the previous algorithms. A

method able to deal with specular highlights has been proposed in [170]. The method assumes

that the light reflected by a surface is only modulated by the incident light, thus producing a set

of colours which are collinear in the colour space when the viewing direction is varied. Under
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this framework, photo-consistent voxels can be detected by evaluating the collinearity of the

set of projection colours in the RGB space (a Lambertian surface correspond to the limit case

where the line segment is restricted to a point). The method is able to reconstruct a broader

class of objects than the previous methods, however it relies on the assumption that the scene

is illuminated by light sources which have the same colour, and also the surface model is still

limited to a certain class of objects. Bonfort and Sturm propose another method for reconstruct-

ing specular surfaces where consistency is determined in terms of the consistency of the set of

normals computed at each voxel [17]. The method is however restricted to purely specular

surfaces and requires the use of a calibrated pattern during reconstruction.

A number of extensions to the previous algorithms have been proposed. In [114], Prock and

Dyer propose methods for improving the performance of voxel coloring algorithms. In partic-

ular, they show that the computation of the projection of voxels in images can be optimised by

using hardware texture mapping. They also propose a coarse-to-fine approach based on an oc-

tree to optimise memory usage and processing time, which is normally an issue with volumetric

methods. In [125], it is shown that the voxel space can be warped to an infinite domain thus

allowing the reconstruction of objects located far away from the cameras as well as the back-

ground. One limitation of the methods reviewed so far is that they all rely on the assumption of

accurately calibrated cameras; errors in calibration result in erroneous projection of voxels in

the images, which in turn corrupt the photo-consistency measure. In order to address this prob-

lem, Kutulakos proposes to define photo-consistency up to specific image transformations that

they call suffle transformations [81]. Saito and Kanade tackle the problem of reconstruction

with uncalibrated cameras in [116]. As in [59], they select two views where the cameras are

approximately pointing at orthogonal directions and are related by their fundamental matrix,

in order to define a projective grid. They compute the projection of voxels by using the funda-

mental matrices relating novel views to the initial two views. Another extension is proposed in

[39] for modelling scenes containing transparent objects.

5.4 Photometric methods

In contrast with previous methods which exploited the displacement of image features due

to camera motion relatively to the object in order to reconstruct the geometry of the scene,
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photometric methods infer 3D information from the radiance measured at each image pixel

under different illumination conditions. With these methods the scene is viewed by a single

camera. If we assume for simplicity that the camera is orthographic and that scene points

(x, y, z) project to pixels (x, y) in the image, the reconstruction problem consists in assigning

a depth z = f(x, y) to each image point (this is easily generalised to projective cameras), thus

producing a 21
2D reconstruction. Typically, rather than direct depth estimation the problem is

formulated in terms of the estimation of surface gradient (p, q) or surface normal (p, q,−1)⊤,

where p and q are defined by:

p =
∂f(x, y)

∂x
and q =

∂f(x, y)

∂y
. (5.1)

Once the gradient has been estimated at each surface point, depth can be recovered by inte-

gration (see for example [145]). In order to be integrable, it is usually necessary to enforce

the integrability constraint which guarantees that the mixed second partial derivatives are equal

(see for example [55]). It can be observed that photometric methods are able to reconstruct

only a surface patch where each point can be modelled by a surface height function f . In the

case of more complex objects for which a full 3D model is needed, it may be necessary to

reconstruct several surface patches and merge them together.

5.4.1 Shape from shading

A single image provides only one constraint on the radiance at each image pixel, however there

are two unknowns p and q to estimate at each image point. This is clearly an ill-posed problem.

It has been shown however that it is still possible to produce a reconstruction by imposing

some additional constraints, for example on the smoothness of f . Such methods are called

shape from shading and are due originally to Horn (see for example [75]). They are usually

computationally intensive and lack robustness due to the necessity of introducing constraint

in order to regularise the problem. A review of shape from shading methods can be found in

[172].
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5.4.2 Photometric stereo

Photometric stereo considers several images obtained by varying the illumination of the scene

while keeping the camera at a fixed position. Unlike shape from shading, this problem is well-

posed and does not require to impose additional constraints. The idea was first introduced by

Woodham in [167]. In photometric stereo, the relation between the image intensity and the

surface gradient represented by p and q, for given illumination conditions, is usually modelled

by a reflectance map. With the knowledge of the reflectance map, each image defines one

equation in the two unknowns p and q for each pixel. These equation are usually non-linear

and therefore a unique solution cannot be guaranteed with only two views. In the case of a

Lambertian surface, these equations become linear when expressed with respect to the unit

surface normal at each pixel [167], and a linear solution can be computed from three images or

more using least square techniques. Because three views or more lead to an over-constrained

system of equations, it is possible to recover additional information such as the albedo at each

surface point in the case of Lambertian surfaces. In comparison with conventional stereo meth-

ods which work well on rough surfaces with discontinuities in surface orientation, or textured

surfaces with varying reflectance, photometric stereo is more efficient in the case of smooth

surfaces with few discontinuities and uniform properties [167].

The implementation of photometric stereo is very simple in the case of Lambertian surfaces,

however such surfaces are not representative of most real surfaces. Ikeuchi proposed an algo-

rithm for the reconstruction of specular surfaces [76]. The method requires to replace point

sources by area sources in order to be able to avoid localised specularities that could not be

measured otherwise. The previous method is however limited to purely specular, i.e. mirror

like, surfaces. In order to model a wider variety of surfaces, more complex reflectance models

have been considered [102, 141]. In [102], a method is presented for the reconstruction of

surfaces with hybrid reflectance models which are a combination of Lambertian and specular

models. The method does not require any prior knowledge of the relative strength of Lamber-

tian and specular components, and is able to estimate surface normal and also the reflectance

parameters at each surface point. However it requires a large number of images in order to

provide a sufficiently dense sampling of the photometric function. Alternatively, Tagare and

de Figueiredo have considered a class of reflectance maps called m-lobed reflectance maps to
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model real surfaces [141].

Unfortunately, a formal reflectance model is not applicable for all surfaces. In [168], Woodham

measures empirically the reflectance properties of the surface. The reflectance map is stored

in a look-up table built by observing a calibration sphere made of the same material as the

object to reconstruct. This approach is able to model arbitrary types of surfaces, however

the surface reconstructed must be made of the same material as the calibration object, have

constant albedo, and both objects must be illuminated and viewed under identical conditions.

In this work, Woodham also considered the use of multi-spectral images in order to acquire

simultaneously all images. He uses three light sources equipped with red, green and blue filters

to illuminate the scene which is captured with a 3CCD camera. In [32], photometric stereo

has been generalised to colour images and showed to result in more accurate reconstruction

compared to grey-level images because of the larger number of constraints provided by colour

information.

So far the previous methods all considered light sources with known positions. In [73], Hayakawa

proposed a method which does not require any a priori information about the light source po-

sitions and strengths. The algorithm uses Singular Value Decomposition (SVD) to factorise

the matrix containing the image intensities for each frame into two components encapsulating

respectively surface and light-source information; the method is similar to the factorisation

method employed for structure from motion in [146]. The method is able to compute surface

normals, surface reflectance, light direction and light source intensity. However, there exists an

ambiguity in the reconstruction, which is represented by an arbitrary invertible 3 × 3 matrix.

Hayakawa resolved the ambiguity by imposing an additional constraint on surface reflectance

or light-source intensity. Belhumeur et al. characterise the ambiguity in the case of continuous

Lambertian surfaces [15]. They show in this case that if z = f(x, y) is the true surface, any

surface z′ = λf(x, y) + µx + νy with λ, µ, and ν real numbers (λ 6= 0) is an equally valid re-

construction; they call this ambiguous transformation a generalised bas-relief transformation.

In the case where the surface albedo is constant or known in advance, or if all light sources

have the same intensity, they show that the ambiguity reduces to a sign ambiguity (in-out am-

biguity), which can be resolved by considering shadows (if present in the images). Drbohlav

and Šára showed in [42] that the general ambiguity reduces to a two degree of freedom group

of transformation in the case where the surface reflectance is the sum of a Lambertian and
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specular component.

One limitation of photometric stereo is that it is based on a local shading model, i.e., it assumed

that the radiance at a surface patch is due only to the light internally generated at sources. Such

a model is inaccurate because it ignores inter-reflection effects, i.e., light generated by the

reflection on other surface patches, or cast shadows, which are both global phenomena. In

[103], Nayar et al. proposed a method able to deal with these effects. They start by generating

a reconstruction using photometric stereo without taking into account inter-reflections, and then

iteratively update the reconstruction by including the inter-reflections produced by the current

reconstruction, until convergence. The approach is however limited to continuous surfaces and

assumes a Lambertian surface model. In [168], it is showed that the over-constrained system of

equation defined by at least three images of a surface with constant albedo can be used to form

a confidence estimate. The confidence estimate measures the deviation from the local model

and can be attributed to global phenomena such as inter-reflections or cast shadows which are

not explained by the latter model. This provides a convenient mechanism for detecting such

phenomena which corrupt the reconstruction.

5.5 Helmholtz Stereopsis

In contrast with previous methods which assumed the surface reflectance of the object re-

constructed to be known in advance or to follow a particular parametric model, Helmholtz

Stereopsis (HS) is able to reconstruct arbitrary surfaces, without making any assumption on

their surface properties. The reflectance properties of a surface are measured by their Bidirec-

tional Reflectance Distribution Function (BRDF), which is defined as the ratio of the outgoing

radiance to the incident irradiance at a given surface point [104]. HS exploits the symmetry of

the BRDF with respect to the incoming and outgoing directions, which is known as Helmholtz

reciprocity. This principle states that the BRDF at a surface point remains unchanged when

the viewpoint and the light source are interchanged. The universality of this principle makes

HS very attractive for reconstruction of surfaces - the only assumption made is that there are

no inter-reflections. The idea of using Helmholtz reciprocity in computer vision first appeared

in [92], and was later on implemented in [177, 178]. The method requires a camera and a point

light source whose positions can be interchanged, thus producing reciprocal pairs of images.
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The constraint derived enables estimation of the depth and normal at each pixel of a virtual

camera sampling the 3D space from a minimum of three reciprocal pairs of images taken for

different camera and light source configurations. This is only a necessary condition for points

to be in correspondence, therefore the authors imposed an additional smoothness constraint

which assumes the scene is made locally of fronto-parallel planes. We limit ourselves to a gen-

eral description of the method for now; a more detailed description of the original algorithm as

well as further developments will be presented in later chapters.

HS presents a number of advantages compared to other reconstruction techniques, namely

[178]:

• It does not assume any model for the BRDF,

• It provides both depth and normal information, thus combining the advantages of con-

ventional and photometric stereo,

• It is unaffected by lack of texture (unlike conventional stereo),

• It simplifies the detection of discontinuities (normally problematic with other techniques)

because shadowed and half occluded regions are in correspondence in reciprocal pairs of

images.

The following assumptions are implicit in HS:

• There are no self-occlusions,

• There are no self-shadows,

• There are no inter-reflections,

• The surface is locally smooth so that it can be represented locally by a reference plane,

• The BRDF is uniform over the area sampled by a camera pixel.

The original implementation of HS considered calibrated cameras and sources. This assump-

tion has been relaxed in [179] where a novel matching constraint based on Helmholtz reci-

procity is derived in the case of uncalibrated cameras and light sources with unknown strengths
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and positions. The only assumption remaining is that the radiometric responses of the cameras

are linear and equal and that the light sources are isotropic. The reconstruction obtained by

enforcing this constraint presents a projective ambiguity, which can be resolved in a stratified

manner by imposing additional geometric or photometric self-calibration constraints. The au-

thors investigate the special case where the distance from the scene to the cameras and sources

is large with respect to the scene relief. They show that in this case the photometric information

allows the additional computation of the surface normals and the strength and direction of the

light sources up to an arbitrary invertible transformation. They also observe that in this case the

camera can be accurately modelled by an affine model, which allows reduction of the ambigu-

ity in the reconstruction and all other previously computed information up to an arbitrary affine

transformation, provided there is a minimum of four observed points and four cameras/sources

pairs considered. The upgrade to metric follows from standard self-calibration techniques.

Other work showed that reconstruction is possible using HS with a single pair of reciprocal

images [156, 180]. In [156], Tu and Mendonça reformulated the reconstruction problem in

terms of finding an optimum path along epipolar lines using dynamic programming. The cost

function minimised is derived from the Helmholtz reciprocity constraint and is therefore inde-

pendent of the surface BRDF, which makes the method applicable with any type of surfaces.

In addition, the cost function considered includes normal information, which imposes tighter

constraints on the reconstruction than conventional dense stereo approaches based on dynamic

programming. In another binocular implementation [180], Zickler et al. observed that the

Helmholtz reciprocity constraint defines a first-order non-linear partial differential equation

in the point coordinates and their first-order derivatives, for which they provide a solution in

the simplified case of distant cameras and light sources, under scaled orthographic projection

camera models. Their implementation proceeds in two steps. They first compute along each

epipolar line a one-parameter family of solutions which is indexed by the choice of depth at the

end-points of each line, and then impose a smoothness criterion across epipolar lines in order

to select the correct solution for each epipolar line.

Jankó et al. [78] addressed the problem of radiometric calibration of the Helmholtz stereo

setup. The radiometric calibration is necessary to compensate for the non-uniformity of the

radiometric camera responses and the anisotropy of the light sources. They show that in the

case of HS, it is sufficient to calibrate the ratio of the radiance due to the source over the pixel
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sensitivity at each pixel in each image, and propose a method to compute these values from a

minimum of two reciprocal pairs of images of an arbitrary planar surface. They report improve-

ments by an order of magnitude in the surface normal estimation when radiometric calibration

is performed. Other extensions of HS have been proposed in the context of registration of 3D

models to a pair of reciprocal images [157] and computer graphics [121].

5.6 Conclusions

We have encountered very diverse image based object reconstruction techniques. These tech-

niques can be classified for example according to the cue used to infer 3D information. For this

reason, these techniques are grouped under the general category of shape from X techniques,

where X represents the cue used for reconstruction. In conventional stereo, the main cue used

is the disparity; volumetric methods have considered silhouettes or photo-consistency, while

photometric methods are based on illumination or shading, and HS on Helmholtz reciprocity.

We concentrated on the most popular techniques, however it is worth mentioning that the list of

cues that can be used for reconstruction is not limited to these techniques. Other techniques are

for example shape from focus/defocus, shape from texture, and shape from zoom. In addition,

it is possible to combine different cues thus producing more efficient reconstruction techniques.

Another way to look at the reconstruction problem is to consider the class of objects to which

the methods are applicable. It appears that the Lambertian assumption is predominant in com-

puter vision because of its simplicity. It is at the basis of conventional stereo techniques as well

as shape from photo-consistency. Even though the reconstruction of more general surfaces

has been considered, in particular in the context of photometric stereo, these methods remain

restricted to a certain class of surfaces following an assumed model or for which reflectance

properties have been measured in advance. Shape from silhouette is one exception, however it

has been observed that the reconstruction obtained by this method is limited to the visual hull,

which is usually a coarse representation of the object. HS is another exception.

What is the best reconstruction technique? This depends on the equipment available, the time

constraints (should the system be real-time?), the required degree of accuracy or flexibility, etc.

If accuracy is the main concern however, it seems a good idea that the choice of the method
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should be driven by the surface properties of the objects that we want to reconstruct, because

deviations of the real surface properties from the model assumed by the reconstruction method

will inevitably result in inaccuracies in the reconstruction of the scene geometry. Because one

of our objectives is to improve the accuracy of the reconstruction of the widest class of objects

possible, the rest of this thesis will concentrate on reconstruction using HS.



Chapter 6

Minimising a radiometric distance for

accurate surface reconstruction with

Helmholtz Stereopsis

6.1 Introduction

In the previous chapter, we reviewed the main image-based object reconstruction techniques.

We observed that Helmholtz Stereopsis (HS) possesses some unique features which make the

technique applicable to a wider class of objects than other techniques. In this chapter and the

following, we continue the development of this technique, and propose a number of improve-

ments and extensions aimed at improving the accuracy of the 3D model generated.

In this chapter, we concentrate on improving the accuracy of the surface normal estimation

from a set of image correspondences using HS. As in most reconstruction techniques, two

fundamental problems can be distinguished: the correspondence and the reconstruction prob-

lems. In the case of HS, the principle of Helmholtz reciprocity has been applied to formulate a

matching constraint which is independent of the surface properties of the object reconstructed.

An appropriate minimisation of this constraint results in a set of correspondences in sets of

images, from which the depth and the surface normal can be reconstructed. The reconstruction

of the normal, in particular, is of high importance because it has been shown to be less affected

115
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by the smoothness assumptions made during reconstruction, compared to the depth estimate

[177, 178]. For this reason, the final reconstruction is usually obtained from the integration of

the normal field. Previous implementations of HS were limited to a linear least-square estimate

obtained from Singular Value Decomposition (SVD) for the surface normal estimation. While

the reconstruction problem appears as a more straightforward problem compared to the match-

ing problem, in particular in the case of surfaces with arbitrary unknown surface reflectance

properties, it remains however an essential part of the reconstruction technique and affects di-

rectly the final geometry of the reconstruction, and should therefore not be neglected. In this

chapter, we carry out a deeper analysis of the normal reconstruction problem. In particular, af-

ter observing that the linear least squares solution minimises an algebraic distance, we propose

an optimum solution based on a novel radiometric distance.

Linear algorithms have been extensively used in computer vision to solve a variety of problems

such as camera calibration or scene reconstruction [72, 48]. These techniques proceed by

defining a set of linear equations for which a solution is easily computed. In pratice, there exists

no exact solution because all measurements are corrupted by noise; therefore an approximate

solution is found by minimising an appropriate cost function. In the case of linear systems of

equations, the solution is usually found by least squares techniques. The error defined by such

a system of linear equations is sometimes called ”algebraic” because it measures how far the

linear equations are from being satisfied in a purely mathematical sense. A popular algorithm

for solving such problems is, for example, the Singular Value Decomposition (SVD) algorithm

[112]. The reason why these algorithms are so popular is that there exists a linear (and therefore

unique) solution and that this solution is usually computationally cheaper to compute than with

more complicated methods. However one major criticism of such methods is that the algebraic

distance usually lacks a physical meaning or interpretation.

Hartley [67, 70] and more recently Izquierdo and Guerra [77] analysed the reasons for the

poor performance of the method minimising algebraic distances. Hartley showed that the poor

performance can be attributed to the lack of numerical consideration when solving the system,

more precisely to the poor conditioning of the set of equations resulting from the noise contam-

inating the input data. He observes that a major cause for the poor conditioning of the system

of equations is the lack of homogeneity in the input data, and proposes a simple normalisation

scheme based on translation and scaling of the input data in order to address the problem. The



6.1. Introduction 117

concept of normalisation was originally introduced in the case of the computation of the fun-

damental matrix via the eight-point algorithm [67], and was later generalised to other problems

such as camera calibration or estimation of the trifocal tensor [70]. Alternatively, Izquierdo and

Guerra considered another class of normalisation transformations defined by diagonal matrices

in order to improve the conditioning of the system - this presents some similarities with the

standard technique of rescaling rows and/or columns of the equation matrix described in [60].

They also show that another cause of instability is the linear dependency between the rows

of the equation matrix. In the same line of research, a variety of estimation techniques have

been developed and applied to improve the solution of various problems in computer vision

[80, 98, 85, 100, 99, 30, 31]. In all these works, normalisation has been shown to improve

greatly the accuracy of the parameters estimated.

In spite of the improvement due to normalisation, methods minimising an algebraic distance are

not as accurate as methods minimising a physically and statistically meaningful distance. The

choice of the optimum distance is motivated by the type of measurements involved and how

they are affected by noise. For example, in geometric problems such as camera calibration, ho-

mography estimation, fundamental matrix estimation or structure from motion, the distances

minimised are naturally geometric distances. A popular choice of cost function in these cases is

the reprojection error, which measures the distance between measurements and their reprojec-

tion [67, 70]. In the case of surface normal estimation using HS, the correspondence problem is

assumed solved already, therefore the measurements affected by noise are the pixel intensities

or radiance values at the matched points, and an optimum distance must therefore be defined in

the space of radiances. In this thesis I develop a novel distance called the radiometric distance.

It measures the modification to be made in each image in order to satisfy exactly the Helmholtz

reciprocity constraint at the point considered; this yields a Maximum Likelihood (ML) surface

normal estimate under standard Gaussian image noise conditions. The main disadvantage of

considering such distances, rather than algebraic ones, is that non-linear minimisation tech-

niques are usually required to compute the solution. Non-linear minimisation techniques are

iterative and usually not as stable as linear techniques, in particular when a large number of

variables is optimised. Fortunately, in the case of the defined radiometric distance, the total

number of variables to optimise can be reduced to only two, in which case a solution can be

computed at extremely low computational cost.
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The chapter is structured as follows. We start by giving a brief overview of HS and describe

the conventional linear least square solution for surface normal estimation; we refer to this

solution as the algebraic solution. We then define a novel radiometric distance in Section 6.3.

In the following section, we observe that an extension is required in order to support image

saturations. Finally, we give some results and compare algebraic and radiometric solutions

with both synthetic and real data, before concluding the chapter.

6.2 Overview of Helmholtz Stereopsis

Consider the configurations of object, light source and camera which are illustrated in Fig. 6.1.

Ol and Or are two points in space and X is a point on a surface. We denote by dl = ‖Ol−X‖
and dr = ‖Or−X‖ the distance from the points Ol and Or respectively to the surface point X ,

and define vl = 1
dl

(Ol−X) and vr = 1
dr

(Or−X), which represent the unit vectors pointing

from the surface point X to Ol and Or respectively. The surface normal at X is given by the

unit vector n. The Bidirectional Reflectance Distribution Function (BRDF) f(X, u, v) of the

surface point X is by definition the ratio of the outgoing radiance along the direction v to the

incident irradiance along the direction u. If we position an isotropic light source of intensity κ

at Ol and a camera at Or, the pixel intensity1 ir observed by the camera is:

ir = f(X, vl, vr)
vl · n

d2
l

κ . (6.1)

If the positions of the light source and the camera are now interchanged2, an analogous formula

is obtained for the radiance il observed by the camera at position Ol:

il = f(X, vr, vl)
vr · n

d2
r

κ . (6.2)

The two images observed by such cameras form what is known as a reciprocal pair. The

Helmholtz reciprocity principle imposes that f(X, vl, vr) = f(X, vr, vl). Denoting sl =

1
d2

l

vl and sr = 1
d2

r
vr, Eq. (6.1) and Eq. (6.2) can be combined to form the constraint [178]:

(ilsl − irsr) · n = 0 . (6.3)

1We adopt the convention that the pixel intensity equals the scene radiance (or equivalently that they are propor-

tional). This is usually a reasonable assumption for high quality cameras. If it is not the case, radiometric calibration

can be performed in order to meet this requirement.
2Note that the same light source with the same intensity κ is used.
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Figure 6.1: A reciprocal pair of images. The position and orientation of the camera and light source are

interchanged.

Two such constraints provided by two reciprocal pairs are sufficient to compute the surface

normal. If more constraints (one per reciprocal pair of images) are available, it is possible

to define a multi-ocular matching constraint and thereby estimate both the depth of the surface

point and its normal [92, 177, 178]. The remarkable feature of this constraint is that it uses only

a non-parametric property of the BRDF (Helmholtz reciprocity) and does not make any use of

the actual BRDF values, thus enabling the reconstruction of objects with arbitrary unknown

surface properties. The implementation of this constraint is discussed in details in the rest of

this section. We start by a general description of the algorithm, and then describe separately

how the correspondence and the reconstruction problems are solved in more details.

6.2.1 Algorithm summary

HS requires to define a sampling of the 3D space around the object of interest. In [177, 178],

the authors introduced a virtual camera in the scene in order to define such a sampling. Equiv-

alently, the 3D space can be discretised regularly into voxels as in the case of other volumetric

methods. This is effectively equivalent to the sampling proposed by [177, 178] in the case of

an orthographic virtual camera. The bounding box of the volume thus defined must be chosen

large enough to contain the object to reconstruct. The concept is illustrated in Fig. 6.2.

Like most volumetric methods, HS reasons directly in 3D in order to establish correspondences.

In the case of HS, correspondences are found by hypothesising that some voxel contains an
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Figure 6.2: Illustration of the HS reconstruction algorithm. The 3D space is discretised into voxels.

Voxels are hypothesised to contain an object surface point, and we use the distributions of vectors

w = ilsl − irsr to test the validity of this assumption at each voxel. We show two examples. The blue

voxel, which does not contain any surface point, yields a random distribution of vectors w, while the

red voxel, which contains a surface point, results in a set of coplanar vectors w. This defines a method

to identify surface points and also compute the surface normal at such points.

object surface, and then testing the validity of the hypothesis based on the distribution of vectors

w = ilsl − irsr defined in Eq. (6.3) by each reciprocal pairs of images at the given voxel. In

a nutshell, voxels containing a surface point are expected to produce a coplanar distribution of

vectors w, while voxels which do not contain any surface points are likely to yield a random

distribution of vectors w. The mechanism for discriminating surface from non-surface voxels

is described in more details in Section 6.2.2.

Once surface voxels have been identified, this defines effectively a set of image point corre-

spondences. For each surface voxel, the surface normal can then be identified by finding the

normal to the distribution of vectors w. We refer to this part of the algorithm as the reconstruc-

tion problem and describe it in details in Section 6.2.3.

6.2.2 Correspondence problem

In the case of HS, the standard solution to the correspondence problem [92, 177, 178] is based

on SVD. We summarise it below. If N ≥ 3 constraints defined in Eq. (6.3) (one for each
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reciprocal pair) are stacked into a matrix, we obtain

Wn = 0 with W =

















(il1sl1 − ir1
sr1

)⊤

(il2sl2 − ir2
sr2

)⊤

. . .

(ilnsln − irnsrn)⊤

















. (6.4)

The main idea is to look at the distribution of row vectors in W in order to establish whether

or not the point considered is a surface point. If the intensities used for constructing the matrix

W come from a point which is located on a surface, these vectors are coplanar and the matrix

W is expected to be of rank 2. If the point is not part of an object surface, the rows of the

matrix W are likely to be random and W to be of rank 3. This is the ideal case. In practice,

the problem is more complex because the measurements are corrupted by noise, and the rank 2

constraint is never going to be satisfied, in a purely mathematical sense, at surface points. For

this reason, an alternative measure of rank has been proposed.

After applying SVD, W can be written:

W = UDV⊤ with D =











σ1

σ2

σ3











and σ1 ≥ σ2 ≥ σ3 ≥ 0 . (6.5)

The support measure is defined in terms of the second and third singular values σ2 and σ3 of

W by

s = 1− σ3

σ2
. (6.6)

A similar measure has been used in previous work [92, 177, 178]. The measure defined in

Eq. (6.6) is strictly equivalent to the measure defined in [92, 177, 178], and has the advantage

of normalising the value between 0 and 1, a value close to 1 corresponding to a high chance

of the point being located on a surface. The general idea is that the three column vectors

from the orthogonal matrix V represent the three principal directions of an ellipsoid, and the

corresponding singular values σ1, σ2 and σ3 represent the strength along each axis. As such,

ideally at a surface point the ellipsoid should be flat, i.e. σ3 should be zero. In practice, because

of noise, the system has always rank 3 and we use the ratio defined in Eq. (6.6) to measure the

non-flatness of the ellipsoid, i.e. how close numerically the matrix W is from being rank 2.
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It is important to mention that Helmholtz reciprocity gives only a necessary condition for a cor-

respondence to exist. This is not a sufficient conditions. One way of resolving this ambiguity is

to impose an additional constraint on the surface. In [92, 177, 178], it has been assumed that the

surface is locally constant. In this case the support measure s, i.e. measure of rank, is averaged

over a rectangular window of fixed size centred at the point of interest. Correspondences are

found by finding the window which maximises this value. In previous implementations, it has

been assumed that the surface to reconstruct is a 21
2 -D surface. Thus the search for correspon-

dences is equivalent to finding the optimum depth (or elevation) along each vertical direction.

In practice, the support measure is computed at the centre of each voxel of the grid, and only

the one which maximises the support measure along each vertical line is retained. Typically the

local depth constancy assumption results in a low resolution reconstruction. For this reason,

the depth value is used only as a means to solve the correspondence problem. A more accurate

estimate of the geometry is obtained from the computation of the normal, which is described

next.

6.2.3 Reconstruction problem

Given some correspondences, previous approaches [92, 177, 178] have estimated the normal

n at each point as the column vector of V corresponding to the smallest eigenvalue, from

the SVD of W expressed in Eq. (6.5). At this stage, no additional smoothness constraint is

required, therefore the normal n is computed only from the intensity values at the projection

of the point considered (i.e. no windowing was applied). It has been observed in [92, 177, 178]

that the normal estimate thus obtained is a more accurate estimate of the object geometry than

the depth value obtained when solving the correspondence problem; in particular it preserves

better the high frequency content of the surface variations (up to the normal sampling). This is

attributed to the fact that no assumption was made about the local surface shape in this case.

As in photometric methods, integration of the normal field has been used at the end of the

reconstruction to compute an accurate 3D model of the object.

It can be shown (see for example [67]) that the solution obtained from SVD is the vector n

which minimises

‖W · n‖2 =
∑

j

[(iljslj − irj
srj

) · n]2 subject to ‖n‖ = 1 . (6.7)
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This cost function can be re-written in the form

∑

j

dalg(n, ilj , irj
, slj , srj

)2 , (6.8)

where dalg denotes the algebraic distance associated with a pair of reciprocal measurements ilj

and irj
and a normal n, which is defined by

dalg(n, ilj , irj
, slj , srj

)2 = [(iljslj − irj
srj

) · n]2 . (6.9)

It can be observed that

dalg(n, ilj , irj
, slj , srj

)2 = ‖iljslj − irj
srj
‖2 cos2 αj , (6.10)

where αj denotes the angle between the vector (iljslj − irj
srj

) and the surface normal n.

cos2 αj represents clearly a physical quantity that we would like to minimise, however the

physical meaning of the scaling factor ‖iljslj − irj
srj
‖2 is not so obvious. It is possible to

eliminate the influence of this term by normalising the rows of W to one, however it may be

the case that the weights introduced by this factor in the cost function defined in Eq. (6.8) play

an important role by attenuating the effect of measurements corresponding to low intensities or

cameras/light sources located far away from the scene point. The effect of this term is not very

clear, and it is not very clear either whether it should be included or not. We will come back

briefly to this problem in the results section. In any case, such a measure (whether normalised

or not) does take into account the nature of the noise contaminating the measurements, and

for this reason cannot be optimum. It has been considered in previous work mainly for its

simplicity. In the next section, we investigate a novel measure which is optimum.

6.3 Surface reconstruction based on a radiometric distance

6.3.1 Definition of the radiometric distance

Since the fundamental entities observed (and likely to be affected by noise) are intensities

or equivalently radiances, it seems a natural idea to perform the minimisation directly in the

space of radiances. We search for the surface normal n and the pairs of estimated intensities
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{̂ilj , îrj
}j which minimise the following cost function:

∑

j

[

(̂ilj − ilj )
2 + (̂irj

− irj
)2

]

subject to (̂iljslj − îrj
srj

) · n = 0 ∀j . (6.11)

Note that slj and srj
are known in the previous equation because the cameras are calibrated.

This cost function measures the corrections to be made in the intensities observed in each

reciprocal pair of images in order to fulfil exactly the constraints in Eq. (6.4). After eliminating

the constraints, the cost function can be written:

∑

j

[

(̂ilj − ilj )
2 +

(

slj · n
srj
· n îlj − irj

)2
]

, (6.12)

where the variables to optimise are n and {̂ilj}j . This is a priori a complex minimisation

problem involving 3 + N unknowns, where N is the number of reciprocal pairs of images.

It is shown in appendix E that this minimisation problem can be simplified to the search for the

surface normal n which minimises the following cost function:

∑

j

[(iljslj − irj
srj

) · n]2

(slj · n)2 + (srj
· n)2

. (6.13)

By analogy with the previous section, we re-write the cost function in the form

∑

j

drad(n, ilj , irj
, slj , srj

)2 , (6.14)

where drad denotes the radiometric distance associated with a pair of reciprocal measurements

ilj and irj
and a normal n, which is defined by

drad(n, ilj , irj
, slj , srj

)2 =
[(iljslj − irj

srj
) · n]2

(slj · n)2 + (srj
· n)2

. (6.15)

This is a simple minimisation problem with only two degrees of freedom (‖n‖ = 1). A

visibility constraint must also be enforced. This constraint states that wl ·n > 0 and wr ·n > 0.

Note that this does not take into account self-occlusions. It is possible to enforce this constraint

during minimisation of the cost function, however it is simpler and usually sufficient to verify

that the visibility constraint is satisfied after convergence of the search algorithm. Any non-

linear iterative method can be used to carry out the optimisation, such as for example the

Levenberg-Marquardt (LM) algorithm. The search can be initialised for example with the

results of the SVD solution, or even by choosing an arbitrary normal satisfying the visibility

constraint.
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6.3.2 Comparison with the algebraic distance

From Eq. (6.9) and Eq. (6.15), it results that for a given reciprocal pair of images:

drad(n, ilj , irj
, slj , srj

)2 =
1

(slj · n)2 + (srj
· n)2

dalg(n, ilj , irj
, slj , srj

)2 . (6.16)

It is difficult to give a simple interpretation of the multiplicative factor relating the two mea-

sures. However, it becomes apparent that the discrepancy between the two constraints is due

only to the positions of the camera and light source relatively to the surface point, and does

not depend on the surface albedo or reflectance property. This does not mean that the accuracy

of the normal estimation does not depend on the latter properties, it probably does, however

the relative performance of the two measures does not. In practice, this implies that the two

measures are equivalent for surface patches equidistant from all camera and light sources and

whose normal bisect all reciprocal pairs. This is approximately the case of horizontal surfaces

located at the centre of the turntable in our experimental set up (see Section 6.5.2).

6.3.3 Maximum Likelihood estimate

We now justify statistically the cost function based on the radiometric distance which is defined

in Eq. (6.14), and show its minimisation provides a Maximum Likelihood (ML) estimate of the

surface normal under standard Gaussian noise assumptions. The demonstration is similar to

the one given in [72] (pp 86–88) in the case of geometric distance for homography estimation.

We assume that the intensity measurement error follows a Gaussian distribution with zero mean

and standard deviation σ at each pixel, and that these measurements are independent. Under

this assumption, the Probability Density Function (PDF) of each measurement pixel intensity

i is:

P (i) =
1

2πσ2
e−

1

2σ2
(̄i−i)2 , (6.17)

where ī denotes the true intensity at the pixel considered. The true intensity values in the right

image {̄irj
}j are related to the true intensity values in the left image {̄ilj}j by the true surface

normal n, such that

īrj
=

slj · n
srj
· n īlj . (6.18)
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Therefore the PDF of the measurements given the true surface normal n and the true intensity

values {̄ilj}j in the left image is:

P ({ilj , irj
}j |n, {̄ilj}j) =

∏

j

1

2πσ2
e
− 1

2σ2

"

(̄ilj−ilj )2+

„

slj
·n

srj
·n

īlj−irj

«

2
#

. (6.19)

We assume that the errors in the determination of slj and srj
are negligible compared to the

intensity measurement error; this is a reasonable assumption if the geometric calibration of the

camera is very accurate, and the surface points can be localised accurately (this may require a

very dense sampling of the 3D space in practice). If we write the log-likelihood, we obtain:

log P ({ilj , irj
}j |n, {̄ilj}j) = − 1

2σ2

∑

j

[

(̄ilj − ilj )
2 +

(

slj · n
srj
· n īlj − irj

)2
]

+N log(
1

2πσ2
) .

(6.20)

The ML estimate of the surface normal n and the image intensities in the left image {̂ilj}j are

the values which maximise this log-likelihood. As for the normal estimation, this is equivalent

to minimising the cost function defined in Eq. (6.12).

6.4 Treatment of image saturation

It has been mentioned earlier that one of the outstanding features of HS is that it does not make

any assumption about the surface reflectance properties of the object. Specularities, which are

traditionally problematic with the majority of image-based reconstruction algorithm, actually

become features which help resolve the matching problem in the case of HS. Nevertheless,

from a practical point of view, it is not always possible to capture all specularities due to the

limited range of the camera sensor. This may result in some saturations of the pixel intensity

measured, which corrupts the constraints because the intensities considered are not the ones

physically expected. So far, very little attention has been given to this problem. Among all

publications in the field of HS, only Tu and Mendonça reported a solution in [156] in the

case of a binocular implementation. We propose a similar treatment of image saturation in

the multi-ocular case, and adapt consequently the radiometric distance defined earlier. Even

though image saturation is usually a relatively localised phenomenon in the image, if ignored

it can result in some artefacts in the reconstruction.



6.5. Results 127

The idea is very simple. When a saturation is observed in a reciprocal pair of images (usually

the saturation is observed simultaneously in both images at reciprocal positions), it means

that the normal approximately bisects the incident and emerging rays. We express this by the

constraint:

(vl − vr) · n = 0 . (6.21)

This constraint replaces Eq. (6.3) when saturation is observed. In this case, the appropriate

rows of W in Eq. (6.4) must be replaced by (vl − vr)
⊤. As for the radiometric constraint

defined in Eq. (6.15), it must be replaced by:

drad(n, ilj , irj
, slj , srj

)2 =

[(

slj

‖slj‖
−

srj

‖srj
‖

)

· n
]2

. (6.22)

This distance is similar to the cost function defined by Tu and Mendonça in [156] in the case

of binocular HS.

6.5 Results

6.5.1 Synthetic data

The aim of the experiment is to compare the accuracy of the methods based on algebraic and

radiometric distances, for surface normal estimation. In order to test the accuracy of the surface

normal estimation independently of the correspondence problem, it is assumed that correspon-

dences are known in advance. Two implementations are considered for the algebraic distance.

The first defines rows for the matrix W as stated in Eq. (6.5) and is called unnormalised al-

gebraic, while the second implementation normalises the rows to unit values and is called

normalised algebraic. The issue of normalisation has been discussed earlier when treating the

reconstruction problem.

A planar and uniform surface patch with ground truth normal n is generated randomly. N

pairs of points Ol and Or are generated randomly; they define N reciprocal pairs of images

(here radiance values) of the surface patch. The points are constrained to be located on the

same side of the patch such that the visibility constraint is satisfied for all reciprocal pairs. The

distance from the points to the patch is also selected randomly within the interval [ǫ, 1] m where

ǫ = 10−3 m, in order to avoid the configuration where the camera or light source is located on
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the surface point. In the implementation, the random positions are obtained by generating

points with random spherical coordinates (r, θ, φ) in the respective intervals [ǫ, 1], [0, π/2] rad

and [0, 2π] rad; in this parametrisation r, θ and φ denote respectively the radial, azimuth, and

zenith coordinates. The radiance values generated are perturbed by a zero-mean Gaussian noise

with standard deviation σ. The strength of the light source is constant and equal to κ = 1, 000.

The BRDF of the surface patch has been modeled by the modified Phong reflectance model

which is described in [87, 83]. It consists of the sum of a diffuse part and a specular part. We

follow the formalism adopted in [83], and define:

fn,kd,ks
(X, vl, vr) = kd

1

π
+ ks

n + 2

2π
cosn α , (6.23)

where α denotes the angle between the perfect specular reflective direction and the emerging

direction. This model has three parameters n, kd and ks, which represent respectively the

specular exponent (large values results in sharper specular reflections), the diffuse reflectivity

and the specular reflectivity. We considered two different settings. The first one corresponds

to the values n = 40, kd = 0.4 and ks = 0.05, while the second one corresponds to the

values n = 1, kd = 1 and ks = 0. The second settings corresponds to a Lambertian model.

The advantage of this model over the original model described in [108] is that it is physically

plausible, i.e., it produces BRDF values which do not violate the laws of physics, in particular

the reciprocity principle on which HS is based. More complex physical-based models such

as the Torrance and Sparrow model [36] could have been considered. However we found it

sufficient to limit ourselves to this model. There are two main reasons for doing this. Firstly,

the Phong model is the most commonly used shader in computer graphics. Secondly, it has

been observed from Eq. (6.16) that the discrepancy between the two distances is not related to

the BRDF, therefore in theory the relative performance of the two methods is expected to be

similar regardless of the choice of BRDF model.

Two sets of experiments were carried out. In the first set, we consider a fixed number of 10 re-

ciprocal pairs of images selected randomly as described earlier, and vary the standard deviation

of the noise added to the measured radiance between 0 and 5, in order to study the influence of

the noise level. The experiment is repeated 10,000 times, and the Root Mean Squared (RMS)

angular error between the estimated normal and the true normal is computed for each method.

The RMS angular error between the set of estimated normals n̂ij and true normals n̄ij is de-
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Figure 6.3: Influence of the standard deviation of the Gaussian additive image noise on the accuracy

of the normal reconstruction. 10 pairs of reciprocal image pairs were considered in all experiments. (a)

shows the results in the case of a Lambertian surface, while (b) considers a Phong reflectance model

with parameters kd = 0.4, ks = 0.05 and n = 40. RMS values computed from 10,000 experiments.
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Figure 6.4: Influence of the number of reciprocal image pairs considered on the accuracy of the normal

reconstruction. The standard deviation of the Gaussian additive image noise is σ = 5 in all experiments.

(a) shows the results in the case of a Lambertian surface, while (b) considers a Phong reflectance model

with parameters kd = 0.4, ks = 0.05 and n = 40. RMS values computed from 10,000 experiments.
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fined by
√

1
N

∑

i

∑

j θ(n̄ij , n̂ij)2, where θ(n̄ij , n̂ij) denotes the angles between the vectors

n̄ij and n̂ij . The results can be found in Fig. 6.3. In the second set of experiments, the noise

level is constant and equal to σ = 5, and the number of reciprocal pairs considered is allowed

to vary between 3 (minimum number supported by the method) and 20. Again the experiment

is repeated 10,000 times, and the Root Mean Squared (RMS) angular error between the esti-

mated normal and the true normal is computed for each method. The results can be found in

Fig. 6.4. It appears that in both cases, the method based on the radiometric distance is much

more accurate than the methods based on the algebraic distance. The normalised implemen-

tation of the method based on the algebraic distance seems to be slightly more accurate than

the unnormalised version, however the improvement is not very significant. The fact that the

method based on the radiometric distance is the most accurate does not come as a surprise. It

is supported by the fact that this method corresponds to the ML estimator.

6.5.2 Real data

The experimental setup (see illustration in Fig. 6.5) consists of a camera, a light source and

a turn-table which performs the interchange of camera and light source positions. The cam-

era and light source are positioned symmetrically with respect to the axis of rotation of the

turntable, such that rotating the turntable by 180 ◦ is equivalent to interchanging camera and

light source positions. Inaccuracies in the positioning typically introduce some errors in the

measurements because the pairs of images acquired do not correspond exactly to reciprocal

configurations. A 12 bit digital camera Vosskuhler CCD-1300 equipped with a 25 mm lens was

used along with a halogen lamp equipped with a diaphragm and acting as a point light source.

The resolution of the images produced by the camera is 1024 × 1280 pixels. The distance be-

tween the camera and the centre of the table is approximately 80 cm and the distance between

the camera and the light source 60 cm. The geometric calibration of the camera was carried out

by grabbing three images of the same planar calibration grid translated by known increments,

thus forming a 3D calibration object. A standard calibration method based on SVD, followed

by lens distortion calibration, has been used. We did not consider more sophisticated methods

such as the ones described in the first part of the thesis because of the particular experimental

setup constraints.
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Figure 6.5: Experimental setup used for reconstruction.

Experiments were carried out with four different objects: a snooker ball (Fig. 6.7), two types

of teapots (Fig. 6.8 and 6.9) and a doll (Fig. 6.10). The first three objects have specular sur-

faces, while the last object seems to be approximately Lambertian. The reconstruction proce-

dure is the same for each object. Eight reciprocal pairs of images are generated by rotating

the turntable by regular 22.5◦ increments. A set of images is shown for one of the objects in

Fig. 6.6. A bounding box is defined for each object, in order to restrict the search for correspon-

dences. The bounding box is discretised into square voxels of resolution 1 mm×1 mm×1 mm

in the case of the snooker ball and the doll, and 2 mm × 2 mm × 2 mm for the teapots which

are larger. The size of the window used during depth search is set to 5 × 5 pixels for all ob-

jects. In addition, some thresholding of the input images has been done before processing in

order to eliminate the background. Such segmentation is rather crude and is usually not able

to eliminate all background pixels; this is not a problem because the remaining points will be

discarded automatically during reconstruction if they produce inconsistent measurements.

HS outputs two cues which can be used for reconstruction: the depth and the normal at each

surface point. The depth map is shown in (b) of each figure; points are represented with a

brightness proportional to the scene depth. The depth maps seem generally rather noisy and
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Figure 6.6: The eight reciprocal pairs of images considered in the case of the object ’Teapot 1’.



6.5. Results 133

(a) (b)

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

(e) (f)

Figure 6.7: Reconstruction of the object ’Snooker ball’. (a) shows one of the input images. (b) repre-

sents the depth map, (c) the normal field and (d) the support measure. (e) shows the 3D model obtained

from integration of the normal field. (f) shows the same model with mapped texture.
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inaccurate. This is due to the fact that the matching constraint provided by imposing Helmholtz

reciprocity defines only a necessary condition for finding correspondences. Even though a

smoothness constraint has been enforced by maximising the support measure summed over a

5× 5 window during depth search, this is not always sufficient to resolve totally the ambiguity.

The use of larger windows would have resulted in less noisy depth map, but this would penalise

the reconstruction of sharper surface variations, because of the low pass filtering effect of the

smoothing. There is obviously a trade-off between filtering out the noise and preserving the

surface variations. A needle map representation of the normal field is given in (c) of each

figure. The normal was computed by minimising the cost function based on the radiometric

distance. It can be observed that the normal field seems to have preserved the surface variations

better than the depth map. This is because no smoothness assumption has been made at this

stage. Naturally the normal field will be chosen as the main cue for inferring the 3D models of

the objects.

Before presenting the final 3D models, a last intermediate result useful for reconstruction is

presented in (d) of each figure. The result in question is the support measure associated with

each normal. The support measure defined in Eq. (6.6) takes values between 0 and 1, the

value of 1 representing the highest level of confidence. As expected, it can be observed that

points located on the object surface are associated with high support measure (very close to

1), while background points have a very low support measure (close to 0). Note that the low

support measure for the background is due to the threshold imposed earlier during background

segmentation. From a theoretical point of view, background points could be reconstructed

by the algorithm, and it may not be necessary to eliminate them. The problem is that there

exist many occlusions/self-shadows at the vicinity of the object, which complicate considerably

the reconstruction process. Even though methods for the detection of occlusions have been

reported to be applicable in this case [178], this is not so straightforward to implement in

practice, and no implementation has yet been reported in the literature. The ultimate goal is to

produce a 3D model of the object. Such a model is obtained by integration of the normal field

using the method reported in [145]. In our implementation, the support measure was treated

as a confidence value for each normal, and was used to weight the associated normal during

integration. The 3D model obtained is shown in (e) of each figure. (f) shows the same 3D

model mapped with the texture from one of the input images.
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Figure 6.8: Reconstruction of the object ’Teapot 1’. (a) shows one of the input images. (b) represents

the depth map, (c) the normal field and (d) the support measure. (e) shows the 3D model obtained from

integration of the normal field. (f) shows the same model with mapped texture.
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Figure 6.9: Reconstruction of the object ’Teapot 2’. (a) shows one of the input images. (b) represents

the depth map, (c) the normal field and (d) the support measure. (e) shows the 3D model obtained from

integration of the normal field. (f) shows the same model with mapped texture.
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Experiments were carried out with both the algebraic and radiometric distances. However, the

qualitative comparison carried out (in particular on the snooker ball for which the shape is

known a priori) did not show any immediately visible improvement due to the use of the radio-

metric distance. For this reason, only results with the radiometric method have been reported

here. It would have been interesting to measure quantitatively the improvement obtained by

considering the radiometric constraint, however no ground truth was available for that. We

believe that the similarity of performance of the two measures is due to the restriction in cam-

era and light source placements relatively to the object which are imposed by the experimental

setup. Indeed, given the relatively small size of the objects compared to the distance separat-

ing them from the camera and light source, this distance can be considered as approximately

constant. Also, because of the visibility constraint imposed, there is not much scope for inci-

dent and emerging angle variations. The constancy of these terms mean that the multiplicative

factors appearing in Eq. (6.16) do not exhibit large variations which normally penalise the alge-

braic distance. It results that for this particular set-up, the algebraic and radiometric distances

are nearly equivalent. The benefit of using the radiometric distance is expected to be larger for

setups allowing more flexibility in camera and light source placements.

The first three objects are particularly challenging to reconstruct because the surfaces are highly

specular. HS seems to be performing very well on these objects as well as on the simpler

Lambertian object. The reconstruction appears very smooth and visually correct. Only a few

very small artefacts are visible at the location of the specularities for the first three objects

(visible in the depth map, the normal field and also to a lesser extent in the final 3D model).

These are caused by saturations due to specularities which are not as localised as expected in

theory, and introduce a slight bias in the surface normal estimate. The extended saturations

observed are due to the fact that the point light source assumption is not exactly satisfied in

practice, and also because the surface is not an ideal specular reflector (mirror surface). The

phenomenon remains very localised however, and does not affect very much the reconstruction

because saturation does not usually occur simultaneously in all reciprocal pairs (except for

horizontal surfaces located on the axis of rotation of the turntable).

One limitation of our implementation is that the reconstruction is restricted to object surfaces

which are simultaneously visible in all reciprocal pairs of images. For example, only the top

part of the snooker ball has been reconstructed, also the handle of the teapots appear as a
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Figure 6.10: Reconstruction of the object ’Doll’. (a) shows one of the input images. (b) represents the

depth map, (c) the normal field and (d) the support measure. (e) shows the 3D model obtained from

integration of the normal field. (f) shows the same model with mapped texture.
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separate components not connected to the rest of the reconstruction. This is mainly attributed

to our experimental setup which does not allow arbitrary camera and light source placements.

A more flexible implementation would allow more general camera and light source placements.

The problem with such an implementation is that there exist many occlusions that corrupt the

reconstruction, and an efficient mechanism to discard them is needed. This can done rather

simply by observing that a point is occluded in one image if it is in a shadowed area in the

reciprocal image, therefore occlusion detection is simplified to shadow detection. In such an

implementation, any point visible in at least three reciprocal pairs of images (the minimum

requirement to compute the support measure) could be reconstructed. Finally, it can be noticed

in the reconstruction of the doll, that some outliers are present at the object boundary. These

are due to some occlusions. These may have been eliminated if a more efficient background

segmentation had been applied, or alternatively if a segmentation had been carried out later on

on support measure values (it can be observed that outliers have lower support measure than

surface points).

6.6 Conclusions

In this chapter, we concentrated on the reconstruction problem in the case of HS. A novel

method for surface normal reconstruction has been presented. The method is based on the

minimisation of a cost function which consists of squared radiometric distances summed over

all reciprocal pair of images in which the surface is visible. Physically, the cost function rep-

resents the modification to be applied to the intensities of the projection of surface points in

order to satisfy exactly the Helmholtz reciprocity principle. The normal found by this method

has been shown to be a ML estimate under standard Gaussian assumption. Such a solution

can be computed at low computational cost because of the small number of optimisation vari-

ables involved. The case of image saturations due to specularities has also been considered and

successfully integrated in our reconstruction algorithm.

In the case of synthetic data, it has been verified experimentally that the radiometric cost func-

tion results in a significant improvement in the accuracy of the normal estimation compared to

the algebraic method based on SVD. Experiments carried out with real data showed that the

method is able to produce realistic 3D models of a variety of objects which are a priori difficult
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to reconstruct because of their surface properties, however the improvement resulting from the

use of the method has not been quantified because of the absence of ground truth for these

objects.

The radiometric distance offers an optimum solution to the surface normal estimation prob-

lem, however the correspondence problem still relies on the use of algebraic solution provided

by SVD. While it appears to be sufficiently accurate, we believe that there exists scope for

improvement in solving the correspondence problem in a more efficient manner, and hope our

work on surface normal estimation will inspire the development of similar methods in this field.



Chapter 7

Generalisation of Helmholtz Stereopsis

to rough and textured surfaces

7.1 Introduction

We continue the work on Helmholtz Stereopsis (HS). In this chapter, we concentrate on extend-

ing the class of surfaces to which the method is applicable. More specifically, we generalise

the method to the reconstruction of textured and rough surfaces. All implementations of HS

presented so far [92, 177, 178, 179, 156, 180] considered the reconstruction of smooth uniform

surfaces. This was also the case of the objects reconstructed in the previous chapter of this the-

sis. In reality, however, many objects do not satisfy this assumption. We distinguish two main

classes of common objects which violate this assumption: i) rough objects (i.e. locally non-

convex) and ii) textured objects. We argue that the standard version of HS which constructs

constraints based on single pixel measurements in images can fail on such objects. In the case

of textured surfaces, the violation is due to the high frequency variations of the surface scat-

tering properties which cannot be captured by the finite sensor elements. In the case of rough

surfaces, the constraint is corrupted by inter-reflections occurring within the non-convex geom-

etry of the surface. In both cases, the reasons for the violation of the constraint are intimately

related to the definition of the Bidirectional Reflectance Distribution Function (BRDF).

This chapter is structured as follows. We start by analysing the physical reasons for the failure

141
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of the standard HS constraint on both types of surfaces. Then a novel method which is able

to produce correct unbiased constraints for both types of surfaces is proposed - the definition

is supported by recent work in the field of physics and remote sensing. It is important to note

that the solution proposed here addresses only the problem of local inter-reflections which are

encountered for example in rough objects. Global inter-reflections can occur at a large scale

and are usually very difficult to take into consideration. This is validated on a simple test object.

Then the implementation in the context of HS is presented. Finally some experimental results

with real objects are presented, as well as a comparison with the standard HS which uses raw

pixel measurements.

7.2 Problem with rough and strongly textured surfaces

In this section, we explain and illustrate on elementary examples that the HS constraint de-

fined in Eq. (6.3) is affected by the presence of texture and inter-reflections occurring in rough

surfaces when single pixel measurements are used to construct it.

7.2.1 Original Helmholtz Stereopsis constraint formulation

The HS constraint expressed in Eq. (6.3), results directly from the reciprocity of the BRDF (see

derivation in previous chapter). Therefore the question of the validity of the constraint concerns

actually the validity of the reciprocity of the BRDF associated with the intensity measurements.

In order to clarify this aspect, it is necessary to go back to the original definition of the BRDF.

The BRDF was originally defined by Nicodemus et al. in [104] as a means of characterising the

geometric reflecting properties of a surface. Let us consider a surface point xr (see Fig. 7.1).

In order to avoid dealing with microscopic representations, which complicate considerably

the parametrisation of the problem, the surface is represented locally by a reference plane.

It is assumed that a relatively large area Ai of the surface is illuminated along the direction

represented by the vector vi by a well collimated beam with uniform irradiance dEi(vi), and

that the point xr is located well within the area Ai. Let us denote by dLr(xr, vr) the resulting

radiance reflected at the point xr in the direction represented by the vector vr. Because of

some physical phenomena occurring at the surface of the material, the radiance emanating
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from this point can be considered as the sum of contributions of elements of area located in the

neighbourhood of the point xr - unless the surface is perfectly smooth and opaque in which

case only the point xr contributes. In order to take into account these phenomena, the area Ai

is chosen large enough such that all points susceptible to contribute to the reflected radiance

dLr(xr, vr) are included. The Bidirectional Reflectance Distribution Function (BRDF) is then

defined as the ratio of the outgoing radiance to the incoming irradiance, i.e.:

fr(xr, vi, vr) =
dLr(xr, vr)

dEi(vi)
. (7.1)

It is clear from the definition that this is a purely theoretical concept involving infinitesimal

elements which cannot be measured in reality. In particular, the reflected radiance should be

confined within a solid angle element, if exact BRDF measurements were to be made.
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Figure 7.1: Reflectance geometry for theoretical definition of BRDF.

In practice, a major source of limitation is due to the resolution of the sensor. The consequence

is that radiance measurements are actually average values of the radiance emanating from the

surface area corresponding to the projection of the sensor element (see Fig. 7.2). If we denote

by Ar the area of the projection of the sensor element observing xr onto the surface (actually

its reference plane), the actual BRDF measured can be expressed mathematically as:

fsensor(xr, vi, vr) =
1
Ar

∫

xr∈Ar
dLr(xr, vr)

dEi(vi)
=

dLr(xr, vr)

dEi(vi)
, (7.2)

where the bar symbol over a variable denotes its mean value. In the previous HS constraint

formulated in Eq. (6.3), the image brightness measured at single pixel locations and denoted
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by il or ir, actually correspond to such average values dLr(xr, vr). In the case of smooth

uniform (i.e. non-textured at the scale of observation) surfaces, the scattering properties of

the surface can be considered statistically uniform and isotropic across the reference plane.

It results that the reflected radiance dLr(xr, vr) is approximately constant over the area Ar

covered by the sensor, and therefore dLr(xr, vr) ≈ dLr(xr, vr). Thus in the case of such

surfaces, Helmholtz reciprocity is satisfied and the constraint in Eq. (6.3) is valid. We explain

next the reasons why this is usually not the case with rough or textured objects.
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Figure 7.2: Reflectance geometry for BRDF measurement with a finite size sensor element.

7.2.2 Textured surfaces

The notion of texture is related to the scale of observation; for example a sheet of paper is

usually considered non-textured at macroscale, although it is textured when observed at a mi-

croscopic scale. Here we refer to textured surfaces as surfaces which appear textured at the

scale of observation. At this scale, such surfaces usually have statistically non-uniform prop-

erties. This poses some problems when carrying out single pixel measurements because the

portions of the surface covered by the pixel projections vary as the camera changes its position

and orientation in space. Practically this means that it is not possible at this scale to carry out

statistically meaningful measurements of the surface radiance emanating from the surface. This

is illustrated on a simple example in Fig. 7.3. Suppose for simplicity that the surface observed

is Lambertian and the variable surface albedo ρ is either 0 (shown in black) or 1 (shown in

white). A camera in a position according to Fig. 7.3(b) perceives a patch of albedo ρ = 1 while
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a camera in configuration according to Fig. 7.3(a) would see ρ ≈ 1/3. The configurations in

Fig. 7.3(a) and Fig. 7.3(b) are in reciprocal positions yet yield differing observed intensities,

hence the principle of reciprocity, at the pixel scale, is violated.
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Figure 7.3: Illustration of the failure of reciprocity in the case of textured surfaces. The portion of the

surface viewed by a finite size sensor element depends on the camera position and orientation. This

results in non-reciprocal measurements.

7.2.3 Rough Surfaces

So far, it has been implicitly assumed that surfaces reflect the light coming from the light source

directly into the camera. This is known as a local shading model [54] (p 77). Even though this

is not the most accurate model of the physics of light reflection, this proved sufficient in the case

of smooth convex objects. Concave surfaces require a significantly more complex description

because the light emitted by a light source may be reflected several times from surface to

surface before reaching the camera. This phenomenon is called inter-reflection. It can occur

a priori with any surface presenting some concavities. We consider an important class of

surfaces accommodating such phenomena: rough surfaces. Such surfaces are microscopically

non-convex and usually present strong inter-reflections.

Let us illustrate the problem on the simple non-convex scene depicted in Fig. 7.4. The scene

consists of two planar patches, one of which (denoted by M ) is a perfect mirror. We consider

a camera and a light source and acquire a reciprocal pair of intensity measurements. If we

first ignore the mirror, the intensity il and ir measured are reciprocal (we assume the surface is

non-textured and therefore reciprocity holds). If we now introduce the mirror into the scene, an
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inter-reflection occurs. It can be observed that this inter-reflection contributes to the intensity

il observed in the left image (see Fig. 7.4(a)), whereas it does not contribute to the intensity

ir observed in the right image because the ray from the interreflection reaches the camera

at a different pixel (see Fig. 7.4(b)). Therefore, the measurements are no longer reciprocal

because of the inter-reflections. It should be noted that it was not necessary here to consider

measurements over finite extent sensor elements in order to prove the non-reciprocity of the

measurements. In practice, the averaging of BRDF over the area observed by the sensor would

show a similar effect, unless the size of the concavity is smaller than the area subtended by

the sensor, in which case all inter-reflections would be captured by the sensor, and reciprocity

would be maintained.
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Figure 7.4: Illustration of the failure of reciprocity in the case of non-convex surfaces. The patch

denoted by M is a perfect mirror. The solid line represents the optical path followed by the ray of light

responsible for the formation of the image of the point X , if the mirror is not taken into account. The

dashed line represents an inter-reflection caused by the introduction of the mirror into the scene. The

inter-reflection contributes only to the image of X by the left camera in this case because the inter-

reflection in the right image is measured at a different pixel, and reciprocity becomes violated. Similar

effects occur in rough surfaces.

7.3 Novel Helmholtz Stereopsis constraint for rough and textured

surfaces

In this section, we formulate a novel HS constraint which does not suffer from the limitations

of the previous one, and demonstrate its validity on a simple test example.
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7.3.1 Definition of the novel Helmholtz Stereopsis constraint

It is clear from the previous section that the idea of carrying out individual pixel measurements

must be abandoned in the case of textured or rough surfaces. The solution proposed is based

on carrying radiance measurements over extended areas corresponding to the projection of the

same surface region. Let us denote by Ar a surface region containing the surface point xr at

which we would like to measure the reflectance properties. We define the BRDF as the ratio of

the average radiance emanating from this region to the incoming irradiance (see Eq. (7.2)). If

the projection of the region Ar in the left and right images are denoted respectively Pl and Pr,

the average radiances can be approximated by the average pixel intensities computed over Pl

in the left image and Pr in the right image:

Il =
1

Pl

∑

Pl

il and Ir =
1

Pr

∑

Pr

ir . (7.3)

Note that by abuse of notation, the same symbols have been used to denote regions and their

areas. The remaining question now is how to chose the areaAr in order to guarantee reciprocal

measurements.

In the case of smooth textured surfaces, the new definition guarantees reciprocal measurements

as long as the image regions Pl and Pr backproject exactly onto the same surface patch Ar.

The proof is straightforward. Every optical path passing through a point in the surface neigh-

bourhood being reciprocal, the average intensity values Il and Ir are also reciprocal because

they correspond to the integration of all paths through the region. In practice, it is not possible

to average the intensity values over areas which correspond strictly to the same area, because

of the finite resolution of the sensor elements. However, if the size of the averaging area is

large enough with respect to the size of the sensor element, the error due to the finite resolution

of the sensor becomes negligible.

In the case of rough surfaces (i.e. locally non-convex), it has been proved recently in [128, 129,

130, 41] that such a definition guarantees reciprocity. The macro-shape of a rough surface can

be represented locally by a reference plane (see Fig. 7.5). The main idea of the proof is that, if

the surface exhibits a reciprocal behaviour at a microscopic level, then it can be easily shown,

at least within the scope of geometric optics, that any optical path passing through the structure

is reciprocal. As a result, after summing all possible paths, our previous definition of BRDF is
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reciprocal, up to boundary effects caused by optical paths for which the incident ray enters the

surface outside the patch and leaves inside it (or similarly, when the incident ray enters inside

the point neighbourhood and leaves outside). In practice, the impact of boundary effects can

be decreased by averaging over more extended surface point neighbourhoods.

(A)(B)

X

Figure 7.5: A rough surface can be represented locally by a reference plane (represented here by a

dashed line). An extended neighbourhood is considered on the reference plane (represented by a solid

line). Two optical paths are shown. The path (A) enters and leaves inside the neighbourhood defined.

This is not the case of the optical path (B), which enters outside of the neighbourhood and leaves inside

it, and therefore contributes to the boundary effects. If the neighbourhood is chosen large enough, the

boundary effects due to local inter-reflections become negligible.

We can therefore define the following HS constraint which is applicable to both textured and

rough surfaces:

(Ilsl − Irsr) · n = 0 . (7.4)

Note that the concept of rough or textured surfaces depends on the scale at which the surface

is viewed. For example, a sheet of white paper is a smooth surface at a macroscale, while it

is rough at a microscale. Clearly the averaging region should be adapted to the scale of the

texture or structure pattern of the surface. We will come back to the problem of the choice of

the scale in Section 7.4. Before that, we validate the novel constraint defined in Eq. (7.4) on a

simple test object.

7.3.2 Experimental validation

A simple experiment was conducted with a concave object exhibiting strong inter-reflections.

The object consists of a spherical cap obtained by sectioning a white ping-pong ball1. The

reference plane chosen is the one corresponding to the plane of the cut. In this plane, we

1The concavity is not a hemisphere because the plane of the cut does not pass through the centre of the ping-pong

ball.
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consider the point X located at the centre of the circle defined by the cross section, and choose

the region bounded by the circle as the extended neighbourhood for this point. In this particular

case, there exists no boundary effects, because the scene consists of only one concavity, and all

the optical paths entering or exiting the concavity must pass inside the extended neighbourhood

defined. The outer part of the ping-pong ball is coated with some clay in order to ensure that

there are no transparency effect perturbing the experiment. Note that this object is locally

smooth, however it exhibits strong inter-reflections at the scale of the whole concavity. This

test object is very simple however very interesting because it allows us to isolate a single

concavity, and test the new principle on this concavity, without being affected by boundary

effects. More complex examples of rough surfaces will be seen in the Section 7.5.2.

The objective of the experiment is two-fold. Firstly we would like to show that pixel based

radiance measurements are affected by inter-reflections, secondly we would like to verify that

even though it is not possible to reconstruct accurately the microstructure of the object (here

the inner part of the ping-pong ball), it is possible to reconstruct the macrostructure of the

object (here the orientation of the ping-pong ball section) by considering intensities averaged

over the area covered by the projection of the section in each image. The experimental set-up

described in Section 6.5.2 of the last chapter was used to acquire reciprocal pairs of images

of the object. In total, five different sets were acquired, each set corresponding to a different

inclination angles of the ping-pong ball section and containing eight reciprocal pairs of images.

The inclination angle is measured with respect to the vertical direction (see Fig. 7.6). The

values of the inclination angle considered are given in the first row of Table 7.1. We show in

Fig. 7.7 the images corresponding to the case where the inclination angle is α ≈ 45◦.

OrOl

X

α

z n

Figure 7.6: Experimental setup for the ping-pong ball section. The normal n of the ball is inclined by

an angle α with respect to the vertical direction z.
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Figure 7.7: One set of eight reciprocal pairs of images of a ping-pong ball section (inclination angle

α ≈ 45). The bottom row images are obtained by interchanging the position of the light source and

camera with respect to the top row image. The outer shell of grey values is the clay that is holding the

half ping-pong ball and also ensures that there are no transparency effect perturbing the experiment.

Limitation of the pixel based constraint

We first tried to reconstruct the entire surface of the ball section by applying the standard HS

algorithm, which considered point-based intensity measurements. We chose the set of images

corresponding to the smallest inclination angle (2.9 ◦) in order to minimise the occlusions. For

this specific inclination, each point in the concavity is visible in all eight reciprocal pairs of

images, therefore the whole concavity can be reconstructed. We applied the method described

in the previous chapter. The results obtained for the depth map, normal field and support

measure, are shown in Fig. 7.8. Even though all points within the concavity are associated with

a high support measure, it can be observed that the points located at the bottom of the concavity

present large depth and normal errors.

The 3D model obtained by integrating the normal field is shown in Fig. 7.9(a). Note that we

applied some manual segmentation based on the support measure in order to filter out back-

ground points which did not present any interest for the experiment. Some artefacts are clearly

visible at the bottom of the 3D model. These artefacts are probably due to inter-reflection ef-

fects which are stronger in the central part of the concavity. For comparison, the 3D model

obtained in the case of the snooker ball is given in Fig. 7.9(b). This object is highly similar

except that it is convex instead of concave. The snooker ball does not present the artefacts

visible in the case of concave surfaces. This experiments suggests that the constraint based on

single pixel radiance measurements is corrupted by inter-reflections occurring in concavities.
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(a) (b)
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Figure 7.8: Reconstruction of the half ping-pong ball. (a) represents the depth map, (b) the normal field

and (c) the support measure.

(a) (b)

Figure 7.9: Reconstruction of the inner part (a) and outer part (b) of a spherical cap. (a) corresponds to

the ping-pong ball section considered in this section, while (b) corresponds to the snooker ball consid-

ered in the previous chapter (see Fig. 6.7). Both models were obtained from integration of the normal

field. Similar view points are considered for both objects. It is clearly visible that (a), which is concave,

is not as well reconstructed as (b), which is convex. The errors in the first case are due to inter-reflections

which corrupt pixel based intensity measurements.

Further experiments need to be made in order to quantify the phenomenon.

Validity of the constraint based on extended regions

In this case, we are interested in reconstructing the macrostructure of the ping-pong ball, which

is represented by the orientation of its cross section. For each set of images, we compute the

average intensities Il and Ir over the area covered by the projection of the ping-pong ball

section in each reciprocal pair of images. The constraints defined in Eq. (7.4) can then be

formed for each reciprocal pair of images, and the normal n can be computed by using one of

the methods defined in the previous chapter. In this case, we used the radiometric method (see

Section 6.3).
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Table 7.1: Comparison between the inclination angles estimated by imposing the novel constraint based

on radiance measurements over extended regions (αext) with the ground truth values (αGT). δ is the

angular difference between the two normals. Note that δ is not equal to the difference between αext

and αGT because the two normals are usually not located in the same vertical plane. All values are in

degrees.

Set 1 2 3 4 5

αGT 2.9 17.4 36.1 45.0 54.5

αext 3.7 15.1 37.4 46.7 56.7

δ 3.8 2.8 1.3 2.6 2.6

Table 7.2: Root Mean Squared (RMS) and maximum deviation angle of the vectors (Ilsl − Irsr) from

the plane orthogonal to the normal (eight vectors were used to compute the deviation). All values are in

degrees.

Set 1 2 3 4 5

RMS 0.25 0.22 0.15 0.14 0.14

max 0.37 0.34 0.29 0.30 0.24

In order to evaluate the accuracy of the normal estimation, the results of the reconstruction

are compared with the ground truth normal obtained by performing conventional stereo on

the outlines of the cut of the ball. The results are shown in Table 7.1. They seem to exhibit a

relatively good agreement. We also evaluate the consistency of the set of constraints in Eq. (7.4)

formed by all the reciprocal pairs. Consistent measurements should lead to coplanar vectors

(Ilsl − Irsr). We therefore measure the angular deviation of these vectors from the plane

perpendicular to the recovered normal n. The Root Mean Squared (RMS) and the maximum

deviation are shown in Table 7.2. The sets of constraints appear consistent for all orientation

of the ball. This evidence supports the theory that the constraint can be used to determine the

macro-structure of the scene.

7.4 Implementation

The implementation of the previous constraint to rough and textured surface reconstruction

requires to construct consistent measurements of surface radiance. Theoretically, these mea-

surements are computed by averaging intensity values over image regions corresponding to the

projection of the same physical surface patch, as described in Eq. (7.3). Such a construction is
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non-trivial because the image areas over which the intensity measurements should be averaged

depend on the local reference plane orientation and also on the local scale of the structure or

texture sub-elements, which are both unknown a priori. We propose two different algorithms

to address these issues.

7.4.1 Extended HS algorithm

The first algorithm proposed is called extended HS. This algorithm uses simple isotropic fil-

tering of the images by an appropriate convolution kernel in order to approximate the average

radiance values. In the implementation, although Eq. (7.3) suggests simple averaging, a Gaus-

sian convolution kernel was used in order to down-weight the contribution of the most distant

points in the neighbourhood. The choice of the parameters of the convolution kernel (size and

standard deviation) are dictated by the scale of the surface structure or texture sub-elements.

Currently these parameters are set empirically. The main advantage of this implementation is

that it is simple and leads to a negligible increase in the run-time compared to the standard

implementation based on single pixel measurements, because the image convolutions can be

done as a pre-processing step.

A limitation of the algorithm is that it implicitly assumes an approximately uniform scale for

the texture or structure pattern. In practice, the method has been observed to be fairly in-

sensitive to the choice of the size of the convolution kernel, as long as it is sufficiently large

to capture the texture or structure variations. For this reason, the previous assumption is not a

problem for a large number of objects, such as the ones considered in the experiments described

in the next section. A more sophisticated implementation, able to cope with large variations in

texture or structure scale, would determine automatically the scale of the texture or structure

sub-elements, and adjust it locally at each image neighbourhood. In the case of the determi-

nation of the texture scale, it has been shown that the polarity provides a useful statistic [54]

(p 196). Similar techniques may be applicable to rough surfaces. An alternative method which

works well with both types of surfaces is presented in the next section.



154 Chapter 7. Generalisation of Helmholtz Stereopsis to rough and textured surfaces

7.4.2 Adaptive HS algorithm

The second algorithm proposed is called adaptive HS. The algorithm tries to dynamically

improve the averaging in Eq. (7.3). The surface neighbourhood is represented by a disc whose

orientation (represented by the normal n) and scale (represented by the radius r) must be

determined. The main idea of the algorithm is that the support measure should be optimum at

the correct scale and surface orientation. We therefore try to find n and r which optimise the

support measure associated with the surface patch.

The solution proposed is iterative and requires initialisation of the surface normal. Such initial-

isation is provided for example by the results of the extended HS algorithm described earlier,

or by choosing any normal satisfying the visibility constraint. At each iteration, the current

normal estimate is used to compute the exact projection of a disc centred at the depth provided

by the previous algorithm. A number of hypotheses are made concerning the radius of the

patch and only the one resulting in the best support measure is retained (i.e. the one leading

to the largest support measure defined in Eq. (6.6)). Rewriting Eq. (7.4) with the intensities

averaged over the projection of the disc with optimum radius, a refined normal is then com-

puted, and the optimum radius can be re-estimated for the same series of hypotheses. We iterate

the procedure until the change in the orientation of the normal estimated is less than a certain

threshold (0.1 ◦ in our implementation) or the maximum number of iterations is exceeded (10

in our implementation). The algorithm is summarised in Algorithm 4.

In terms of run-time, the adaptive HS algorithm is slower than the extended HS algorithm

because it is iterative and also because the computation of the projection of a disc is more

computer intensive. The adaptive HS algorithm is however expected to give more accurate

results because it averages the intensities over areas corresponding to the projection of the

same surface point neighbourhood and also optimises the scale at each surface point.

7.5 Results

In this section we demonstrate the applicability of the method to textured and rough surfaces.

The experimental setup and methodology are the ones described in the previous chapter. The

reconstruction method is also similar to the one described in the previous chapter, except that



7.5. Results 155

Algorithm 4 Adaptive HS algorithm

The objective is to compute the normal n and radius r of the circular surface patch with highest

support measure s. The parameter ǫ represents the tolerance in angular change in surface

normal orientation, and imax is the maximum number of iterations.

1. Initialisation: i ← 0, s ← −∞, n ← n0, r ← 0, where n0 is the normal provided by

the extended HS algorithm, if available, or otherwise any value satisfying the visibility

constraint.

2. Do:

(a) Assume that the orientation of the patch is n, and compute the average image

intensities Il and Ir for different radius hypotheses rk,

(b) Form the constraints in Eq. (7.4) and compute the normal nkand the support mea-

sure sk associated with each radius rk using for example the method described in

Section 6.3,

(c) Find the parameter kopt which leads to the highest support measure (i.e. largest

value defined in Eq. (6.6)),

(d) If skopt
≤ s, exit the loop,

(e) Otherwise set δ to the absolute value of the angle between n and nkopt
,

(f) Update: i← i + 1, s← skopt
, n← nkopt

, r ← rkopt
,

while δ > ǫ and i < imax.

3. Return n.
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(a) (b)

Figure 7.10: Images of the textured objects used for reconstruction: (a) is a mug and (b) the head of a

polystyrene mannequin.

consistent radiance measurements provided either by the extended HS or adaptive HS algo-

rithms are used. These two techniques are compared with the standard HS algorithm described

in the previous chapter.

7.5.1 Textured surfaces

Two textured objects were considered (see Fig. 7.10). The first one is a mug with some blue dot

patterns painted on a white background surface. The second object is a polystyrene mannequin

head, in this case the texture comes from the material itself. Both surfaces are specular, which

makes the reconstruction difficult with standard techniques.

For both objects, a bounding box has been defined and the 3D space has been discretised

into square voxels at a resolution of 2 mm × 2 mm × 2 mm. A window of size 5 × 5 pixels

is used to resolve the matching ambiguity during depth search. In the case of the extended

HS algorithm, a Gaussian convolution kernel of size 21 × 21 pixels with standard deviation

4 pixels was used. The choice of the size of the kernel is dictated by the scale of the texture

at the surface of the objects. In this case, the scale has been selected empirically. We have

observed that the choice of this parameter does not need to be very accurate. Close values

will most likely lead to the same results as long as the scale is large enough to capture the

texture sub-elements. Unnecessarily large scales are however not recommended because they

would result in a decrease in the resolution of the reconstruction. In the case of the adaptive

algorithm, the scale, which is represented by the radius of the disc projected, is allowed to take
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Figure 7.11: The grey level of a pixel encodes the radius (in mm) of the disc representing the surface

patch at each point, after convergence of the adaptive HS algorithm, for the two textured objects.

arbitrary values within the interval [0, 5] mm sampled at a resolution of 0.5 mm. The algorithm

selects automatically the best value within the interval for each surface point. The optimum

scale found after convergence at each surface point can be found in Fig. 7.11.

The results of the reconstruction are shown in Fig. 7.12 and Fig. 7.13. Qualitatively, it can be

observed that the depth map and the normal field are less noisy and apparently more accurate in

the case of the extended and adaptive HS algorithms, compared to the standard HS algorithm.

Regarding the support measure, although it is clear that points located at the surface of the

object have high values, it is difficult to say which method leads to the highest value by simple

visual observation. More is said on this topic in the next paragraph. It can be observed that

most background points are eliminated (zero support measure). This is due to the input image

thresholding which has been applied during reconstruction and also the requirement for the

surface points to be visible simultaneously in all reciprocal pairs of images. In spite of this

filtering, there remains a number of background points, in particular in the case of the mug. In

the final reconstruction, these outliers were eliminated based on the support measure values.

Such segmentation was done manually, although the task could certainly be automated in the

future. We did not consider doing such optimisation in the current implementation, because

our objective is to demonstrate the feasibility of HS in the case of textured and rough surfaces,

therefore it is not desirable to add other potential sources of errors in the analysis. The 3D

models were then produced by integration of the normal fields weighted by the support measure

at each point, as described in the previous chapter. Background points are set to zero support,
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Table 7.3: Comparison of the RMS support measure obtained by the different reconstruction algorithms

for the textured objects considered.

Mug Mannequin head

standard HS 0.9455 0.9438

extended HS 0.9869 0.9883

adaptive HS 0.9912 0.9908

which has the effect of eliminating them from the reconstruction. It can be observed that the

3D model obtained with the extended and adaptive HS have a smoother appearance than the

one obtained from the standard HS algorithm. We also show the 3D model obtained by the

adaptive HS algorithm texture mapped with one input image in Fig. 7.14. The results seem

realistic and able to capture accurately the 3D shape of the objects.

Quantitatively, we use the Root Mean Squared (RMS) support measure in order to define a

measure of the consistency of the normals obtained with the intensity measurements. The RMS

support measure is computed only over the points which belong to the object surface, hence the

necessity of an accurate segmentation from the background if we want the measure to be reli-

able. Denoting by N the number of surface points and by sij the support measure at the surface

point parameterised by i and j, the RMS support measure is defined by:
√

1
N

∑

i

∑

j s2
ij . The

values obtained for the different algorithms are presented in Table 7.3. The quantitative results

confirm that the support measure is increased with the two methods considering extended re-

gions (extended and adaptive HS algorithms) compared to the standard HS algorithm. Such an

increase is important because it means that these methods are able to produce more consistent

models than the standard one. The extended HS and adaptive HS algorithms give very close

results. As expected, the adaptive HS leads to the highest values, because it is the only one to

optimise the scale and orientation of the patch locally at each surface point.

7.5.2 Rough surfaces

We now consider the reconstruction of two objects with rough surfaces (see Fig. 7.15). The first

one is a teddy bear, and the second one is a piece of corrugated cardboard. Both surfaces are

highly anisotropic and exhibit strong inter-reflection effects, making the reconstruction again

very challenging by state of the art techniques.

The reconstruction is made at a resolution of 2 mm × 2 mm × 2 mm for the teddy bear and
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Figure 7.12: Reconstruction of the object ’Mug’. The left, middle and right columns correspond re-

spectively to the standard, extended and adaptive HS algorithms. From top to bottom, the rows represent

the depth map, the normal field, the support measure, and the 3D model obtained from integration of

the normal field.



160 Chapter 7. Generalisation of Helmholtz Stereopsis to rough and textured surfaces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard HS Extended HS Adaptive HS

Figure 7.13: Reconstruction of the object ’Mannequin head’. The left, middle and right columns

correspond respectively to the standard, extended and adaptive HS algorithms. From top to bottom,

the rows represent the depth map, the normal field, the support measure, and the 3D model obtained

from integration of the normal field.
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(a) (b)

Figure 7.14: Texture mapped 3D models obtained by the adaptive HS algorithm for the two textured

objects.

(a) (b)

Figure 7.15: Images of the rough objects used for reconstruction: (a) is a teddy bear and (b) a sheet of

corrugated cardboard.
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Figure 7.16: The grey level of a pixel encodes the radius (in mm) of the disc representing the surface

patch at each point, after convergence of the adaptive HS algorithm, for the two rough objects.

1 mm × 1 mm × 1 mm for the corrugated sheet. As previously, a window of size 5 × 5 pixels

is used to resolve the matching ambiguity during depth search. In the case of the teddy bear,

we used a convolution kernel of size 21 × 21 pixels with standard deviation 4 pixels for the

extended HS algorithm, and allowed the radius of the disc representing the surface patch to

take arbitrary values within the interval [0, 5 mm] sampled at a resolution of 0.5 mm for the

adaptive HS algorithm. The size of the structure elements is much larger in the case of the

corrugated sheet, therefore it is necessary to define larger extended regions for averaging. The

size of the convolution kernel was set to 101× 101 pixels with standard deviation 20 pixels and

the possible values for the radius to the interval [2, 10 mm] sampled at a resolution of 1 mm.

Again it was observed that the scale did not matter much as long as it was large enough to

cover the concavities defining the surface structure and make the boundary effects negligible.

The optimum scale found after convergence at each surface point is shown in Fig. 7.16.

Fig. 7.17 and Fig. 7.18 show the results of the reconstruction for the three different algorithms.

Similarly to the previous section, we can observe that the depth maps and normal fields are

more noisy in the case of the standard HS algorithm. This is considerably improved by the al-

gorithm considering extended regions. It is interesting to note that in the case of the corrugated

sheet, the microstructure, i.e. here the undulations of the structure, can be reconstructed. We

provide a reconstruction of a smaller area of the sheet at a finer resolution in Fig. 7.19.

It can be verified that the support measure at surface points is not as high when single pixel

measurements are considered, in particular in the case of the corrugated sheet. The darker
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Figure 7.17: Reconstruction of the object ’Teddy bear’. The left, middle and right columns correspond

respectively to the standard, extended and adaptive HS algorithms. From top to bottom, the rows repre-

sent the depth map, the normal field, the support measure, and the 3D model obtained from integration

of the normal field.
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Figure 7.18: Reconstruction of the object ’corrugated sheet’. The left, middle and right columns cor-

respond respectively to the standard, extended and adaptive HS algorithms. From top to bottom, the

rows represent the depth map, the normal field, the support measure, and the 3D model obtained from

integration of the normal field. Note that the images representing the support measure in the case of the

extended and adaptive HS algorithms are not missing or corrupted; they appear invisible because the

support measure is very high at every point.
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Figure 7.19: Reconstruction of the object ’corrugated sheet’ at a smaller scale using the standard HS

algorithm. (a) represents the depth map, (b) the normal field, (c) the support measure, and (d) the 3D

model obtained from integration of the normal field.
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Table 7.4: Comparison of the RMS support measure obtained by the different reconstruction algorithms

for the rough objects considered.

Teddy bear corrugated sheet

standard HS 0.9506 0.9367

extended HS 0.9861 0.9970

adaptive HS 0.9900 0.9973

region of lower support measure suggest the location of regions most affected by the inter-

reflection effects. This tendency, visually observed, is confirmed by the RMS support measure

computed over the surface points of both objects, after appropriate segmentation of the back-

ground, which are shown in Table 7.4. The adaptive algorithm leads to the highest support

measure among all algorithms. In the case of the teddy bear, the 3D model obtained with the

extended or adaptive algorithms have a smoother appearance, which is still able to capture fine

details such as the seam on its belly. In the case of the corrugated sheet, it is possible to re-

construct both the microstructure and the macrostructure of the object. Note however that the

reconstruction of the microstructure has several disadvantages. Firstly it has a high memory re-

quirement and run-time because of the necessity to sample the surface at a very fine resolution.

Such reconstruction would not be practical if a large area was to be reconstructed at such a res-

olution. Secondly the reconstruction at a microscopic scale is necessarily inaccurate because

of the inter-reflection effects. This is suggested by the lower support measure observed in this

case. We show the 3D models obtained by the adaptive HS algorithm after texture mapping in

Fig. 7.20.

7.6 Conclusions

Rough and highly textured surfaces are often encountered in reality. The ability to recon-

struct their shape is important in computer vision. In this work, we explicitly addressed the

problem of reconstructing such surfaces by Helmholtz Stereopsis (HS). We observed that ra-

diometric constraints constructed from single pixel measurements are necessarily biased when

inter-reflections or strong texture are present. We showed that a solution is to construct consis-

tent measurements from image regions corresponding to the projections of the same bounded

surface patch instead. An experiment on a hemispherical concavity revealed good agreement of

the results with the theory. It is important to note that solution proposed addresses the problem
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(a) (b)

Figure 7.20: Texture mapped 3D models obtained by the adaptive HS algorithm for the two rough

objects.

of local inter-reflections only; global inter-reflections effects are very challenging and usually

very difficult to take into account.

Two different HS algorithms generalised to highly textured and rough surfaces were proposed.

The first algorithm, called extended HS, approximates the average image radiances by pre-

processing each input image using isotropic filtering. This is equivalent to running the standard

HS algorithm on the pre-convolved input images. As such, consistent measurements can be

obtained without significant increase in the run-time of the standard HS algorithm. The other

algorithm, called adaptive HS, finds the optimum scale and refines the normal obtained by the

extended HS algorithm, by iteratively averaging the intensities over areas corresponding to the

projection of the same surface point neighbourhood.

The experiments on objects exhibiting rough surface properties or strong texture showed that

the novel formulation usually results in an increase in the quality of both the depth map and

the normal field reconstructed, compared with the standard HS algorithm. It also resulted in a

significant improvement in the consistency of the radiometric constraints used to validate the

hypotheses on surface geometry, and produced realistic 3D models with smoother geometries.

It is important to mention that in certain cases, for example if the scale of the texture pattern

or structure pattern defining the rough surface is large with respect to the camera resolution,

then the standard HS algorithm is usually able to produce visually accurate reconstructions.

In this case, it is therefore usually possible to obtain a reconstruction of the scene both at a
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microscopic scale (with the standard HS algorithm) and a macroscopic scale (with the novel

algorithm). The reconstruction obtained by the standard HS algorithm has two disadvantages

however: i) it has a high computational cost because of the fine resolution required and ii) it

may be inaccurate because of the limitations inherent to the standard HS constraint mentioned

earlier.
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Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis, we have considered the problem of improving the accuracy of object reconstruc-

tion from images. Our contributions were made in two main areas of computer vision which

are camera calibration and Helmholtz Stereopsis (HS).

In the case of camera calibration, we have concentrated on using invariants in order to increase

the accuracy. Invariants allow more accurate determination of the camera parameters because

they define constraints on subsets of the camera parameters, that can be used to generate new

data without increasing arbitrarily the dimensionality of the problem. We have considered two

main situations.

The first situation corresponds to a translating camera. In this case, we have developed a novel

calibration method which is based on Points at Infinity (PI) representing directions present in

the scene. The method uses the invariance properties to translation motion, of the projection of

these points, called the Vanishing Points (VPs), in order to decouple the translation parameters

from the other parameters, thereby generating two simpler sub-problems with constant number

of unknowns. Our method differs significantly from other VP-based methods, because it does

not require to observe parallel sets of lines in the scene. This is a considerable advantage in

terms of flexibility, in addition to the improvements in calibration accuracy that were observed.

The second situation that we considered is the case of a zooming camera moving freely in 3D

171
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space. For this purpose, we have introduced the novel concept of the Normalised Image of the

Absolute Conic (NIAC), which comes as a generalisation of the Image of the Absolute Conic

(IAC) to zooming cameras. The NIAC can be considered as a particular instance of the set of

all possible IAC representing the different possible zooming factors. It is an imaginary object

which cannot be observed directly. We proposed several algorithms for its determination. The

method requires three or four views of a planar grid, depending on the camera model adopted.

It decouples the camera parameters into three sub-sets with constant number of parameters: the

first one containing the intrinsic parameters independent to zooming, the second one containing

the remaining intrinsic parameters (focal lengths) for each view, and a third one containing the

extrinsic parameters. The different algorithms proposed accommodate the different types of

cameras (zero or non-zero skew). Experiments with synthetic and real data showed the novel

method is more accurate than other plane based calibration methods which do not consider

such invariance properties.

In the case of reconstruction using HS, we have proposed several contributions which increase

the accuracy of the standard implementation, and also open up the possibility of reconstructing

a wider class of objects.

The first main contribution we have proposed in this field is a method to reconstruct optimally

the surface normal at each surface point. This replaces the standard solution based on Singular

Value Decomposition (SVD) which had an algebraic basis and lacked of physical meaning.

Our method is based on the minimisation of a novel distance that we have called the radio-

metric distance. Effectively, minimising the radiometric distance is equivalent to minimising

the modification in intensities to be applied in each image in order to satisfy exactly the HS

constraint at each surface point. The solution is simple, and it has been shown that it provides

a Maximum Likelihood (ML) estimate in the case of standard Gaussian additive noise condi-

tions. In addition, we addressed the problem of image saturations due to specular highlights.

Experiments with synthetic data confirmed the superiority of the radiometric constraint over

the algebraic one. In the case of experiments with real data, the novel measure proved able

to reconstruct accurately the object geometry, although the improvement was not as obvious

compared to the algebraic solution, in the case of our particular experimental setup.

Our second contribution in HS is to show that the standard HS implementation based on indi-
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vidual pixel measurements is biased in the case of rough or textured surfaces. We proposed

an alternative measure which can be used for the reconstruction of both types of surfaces

and is compatible with the most recent definition of Bidirectional Reflectance Distribution

Function (BRDF) for locally non-convex surfaces. We demonstrated the applicability of the

novel constraint defined on several real test objects.

Throughout the second part of the thesis, a variety of real objects were considered. Some

were textured, others almost uniform. Regarding their surface properties, some were smooth,

others were rough. Almost all objects were specular. In all cases, the reconstruction obtained

appeared accurate and realistic. It is important to mention again that no assumption regarding

the surface properties has been made at any stage of the reconstruction. This illustrates the

great potential of HS for the reconstruction of surfaces.

8.2 Future work

In the stratified representation of invariants shown for camera calibration, the NIAC occupied

the highest position after the IAC and the VP. One limitation of the zooming camera calibra-

tion method based on the NIAC is that it assumes that the principal point remains fixed while

zooming. This is not the case of all camera technologies. However, we have observed that the

assumption is reasonable if the aim of camera calibration is to compute the overall projection

matrix rather than the individual camera parameters. If these parameters must be computed

separately and accurately, it may be necessary to consider other methods, depending on the

particular camera behaviour.

One can wonder how far it is possible to go in the hierarchy of invariants. In particular, it could

be tempting to try and incorporate the coordinates of the principal point into a novel invari-

ant, thus extending the invariance properties to another level. In the context of plane-based

camera calibration, including the coordinates of the principal points makes camera calibra-

tion more complicated because it can no longer be performed from several views of a single

planar calibration plane (n images of a single plane provide only 2n constraints on the intrin-

sic parameters, therefore there can be at most only one variable parameter among all intrinsic

parameters). This implies that if such an invariant was to be considered, a more complex cal-
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ibration grid should also be used, which would make calibration more complicated to use in

practice.

One possible line of research would be to define invariants which incorporate lens distortion.

In this thesis, we have considered only invariants in the case of an undistorted pin-hole camera.

If the camera deviates from such a model, the distortion has first been corrected by applying

other methods, and then our methods have been applied to the undistorted images. A more

efficient framework would define invariants which incorporate the lens distortion. In [155],

Tsai has already considered an invariant to the radial distortion but only in the case of camera

calibration from a single image. In the case of multiple images separated by a translation, a

free motion, or a free motion plus zooming, new invariants must be defined.

In the field of HS, we have proposed an optimum solution to the normal reconstruction problem.

However we believe that there remains scope for improvement in solving the correspondence

problem more accurately. The current solution to this problem is still based on SVD, and

although it lead to good results, it seems reasonable to think that this aspect of reconstruction

could benefit from more sophisticated techniques, which find correspondences in a statistically

optimum manner.

If we consider the applicability of the method, the range of objects covered is quite large.

In addition to smooth uniform objects, we have extended the applicability of the method to

objects with textured or rough surfaces. The solution proposed takes into account local inter-

reflections, however global inter-reflections remain problematic, because of the large scale at

which such effects can occur and the difficulty to detect them. Another class of objects that

cannot be reconstructed by HS is the case of transparent objects.

Another line of research that we have already started exploring is the development of volumet-

ric implementations of HS. The current multi-ocular implementations of HS treat the recon-

struction problem independently along each line of the grid. We believe that HS could benefit

significantly from the use of methods which solve simultaneously the correspondence and re-

construction problem in 3D. In this framework, the problem could be formulated as finding a

surface which maximises the support measure over its surface. This would allow to eliminate

the fronto-parallel assumption imposed during computation of the surface depth, because the

ambiguity could now be resolved by imposing more appropriate constraints to the surface evo-
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lution in space. In addition, such a procedure would use optimally the double output resulting

from the HS constraint (surface normal orientation and depth at each point). So far only normal

orientation has been considered for the generation of the final 3D model.
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Appendix A

Camera position estimation

This chapter describes different methods for the computation of the camera position in the case

that the intrinsic and orientation parameters have already been estimated. This problem has

been labelled Problem 2 in Section 3.3. Two methods are presented: a linear and a non-linear

method. Typically the linear method is computed first because of its simplicity, and is followed

by the non-linear method which gives a refined solution.

A.1 Linear solution

Once the intrinsic parameters and orientation are known, the position (or translation vector t)

can be computed from point correspondences. Since P i are real points in the scene which are

not located at infinity, their last coordinate is non-zero, and the homogeneous coordinates can

be scaled so that the fourth coordinate is unity. Under this assumption, Eq. (2.7) can be written

in the form

pi ∼ K [R|0]P i + Kt .

The two terms in the previous equation are equal up to a scale factor, that is their cross product

is zero, and it follows that

pi × (K [R|0]P i + Kt) = [pi]×(K [R|0]P i + Kt) = 0 .
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In the previous expression, for convenience, the cross product has been expressed in terms of

the skew symmetric matrix, which for the vector pi = (pi1 , pi2 , pi3)
⊤ is defined by

[pi]× =











0 −pi3 pi2

pi3 0 −pi1

−pi2 pi1 0











.

The previous equation can be written in the form

Bit = ci with Bi = [pi]×K and ci = −[pi]×K [R|0]P i . (A.1)

This defines a system of three equations. However, since the skew symmetric matrix has rank 2,

the equations are not linearly independent, thus the third equation can for example be omitted.

From a set of n point correspondences, a 2n × 3 matrix B and a 2n vector c are obtained by

stacking up the matrices Bi and vectors ci respectively for each correspondence. The vector t

is then computed by solving the linear system Bt = c.

As the system has 3 unknowns, and each point correspondence leads to two equations, a min-

imum solution is obtained from 11
2 points. The 3 × 3 matrix B has rank 3, so it is invertible

and t = B−1c. If only one point is available the camera calibration is still possible but up to

an overall scale factor.

In practice, the system is usually over-determined, and an approximate solution t that min-

imises ‖Bt − c‖ is sought. The matrix B having full-rank, a least-square solution is obtained

by computing its pseudo-inverse [72]. The procedure is described in Algorithm 5.

Algorithm 5 Basic linear computation of t

1. For each world to image point correspondences P i and pi, compute the matrix Bi and

the vector ci from equation (A.1).

2. Assemble all the matrices Bi into a single matrix B , and all the vectors ci into a single

vector c.

3. Compute the pseudo-inverse of B , by the formula B+ = (B⊤B)−1B⊤.

4. Obtain t = B+c.
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A.2 Minimisation of a geometric distance

In order to refine the solution obtained previously, we search for the translation vector t which

minimises the sum of squared geometric errors defined by the distance between the projection

of 3D points and the corresponding image points in the image plane

d′geom(pi, K [R|t]P i) = ‖pi − K [R|t]P i‖ . (A.2)

A suitable algorithm to solve such a non-linear minimisation problem is for example the

Levenberg-Marquardt (LM) algorithm [112].
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Appendix B

Approximation of the variance of the

geometric distance

In this section, error propagation is used to compute the variance of the geometric distance

dgeom(v, l) defined in Eq. (3.7). For simplicity, it is assumed that the uncertainty in dgeom(v, l)

results only from the uncertainty in the measure of the image line coordinates l, i.e. the coordi-

nates of the associated Vanishing Point (VP) v is assumed to be known exactly. The motivations

for such an approximation are explained in Section 3.3.3.

We start by making some statistical considerations regarding the distribution of the end points

of image lines, in order to compute the covariance matrix of their coordinates. It is assumed

that the coordinates of end points pi = (xi, yi, 1)⊤ follow a Gaussian distribution with mean

p̄i = (x̄i, ȳi, 1)⊤ and standard deviation σ for each coordinates, which are assumed inde-

pendent. Under these assumptions, a line l ∼ pi × pj with end points pi = (xi, yi, 1)⊤

and pj = (xj , yj , 1)⊤ depends on the distribution of the vector (xi, xj , yi, yj)
⊤, which has

mean (x̄i, x̄j , ȳi, ȳj)
⊤ and covariance matrix σ2I , where the matrix I is the identity matrix.

The function which maps the vector (xi, xj , yi, yj)
⊤ to the coordinates of the image line

l = (yi − yj , xj − xi, xiyj − xjyi)
⊤, has a Jacobian matrix J0 evaluated at (x̄i, x̄j , ȳi, ȳj)

⊤

which is equal to:

J0 =











0 0 1 −1

−1 1 0 0

ȳj −ȳi −x̄j x̄i











.
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It results from error propagation (see for example [72], pp 123–125) that the coordinates of the

line form a random variable l with mean l̄ = (ȳi − ȳj , x̄j − x̄i, x̄iȳj − x̄j ȳi)
⊤ and covariance

matrix

Σ = σ2J0IJ
⊤
0 = σ2











2 0 −x̄i − x̄j

0 2 −ȳi − ȳj

−x̄i − x̄j −ȳi − ȳj x̄2
i + x̄2

j + ȳ2
i + ȳ2

j











.

Now the function which maps the coordinates of the image line l = (a, b, c)⊤ to the ge-

ometric distance dgeom(v, l), given a known VP v = (u, v, w)⊤, is considered. The Jaco-

bian matrix of this function, evaluated at l̄ = (ȳi − ȳj , x̄j − x̄i, x̄iȳj − x̄j ȳi)
⊤, is defined by

J = [
∂dgeom

∂a
,

∂dgeom

∂b
,

∂dgeom

∂c
]. The partial derivatives are given by:

∂dgeom

∂a
=

1√
a2 + b2

∂

∂a
(a

u

w
+ b

v

w
+ c) + (a

u

w
+ b

v

w
+ c)

∂

∂a

1√
a2 + b2

=
1√

a2 + b2

u

w
− 1

2
(a

u

w
+ b

v

w
+ c)

2a√
a2 + b2(a2 + b2)

=
1√

a2 + b2

[

u

w
− a(a u

w
+ b v

w
+ c)

a2 + b2

]

,

∂dgeom

∂b
=

1√
a2 + b2

[

v

w
− b(a u

w
+ b v

w
+ c)

a2 + b2

]

,

∂dgeom

∂c
=

1√
a2 + b2

∂

∂c
(a

u

w
+ b

v

w
+ c) + (a

u

w
+ b

v

w
+ c)

∂

∂c

1√
a2 + b2

=
1√

a2 + b2
.

It should be noted that the expression of the second partial derivative can be deduced from

the expression of the first one by symmetry, interchanging a and b, and u and v. Applying

error propagation one more time, it is obtained that dgeom is a random variable with variance

σ2
geom = JΣJ⊤. This proves the result stated in Section 3.3.3.



Appendix C

Equation of the IAC

We consider the general model defined in Eq. (2.5) for the calibration matrix K , i.e.

K =











f −f cot θ u0

fr
sin θ

v0

1











. (C.1)

In matrix form, the Image of the Absolute Conic (IAC) is represented algebraically by the

equation

p⊤ωp = 0 , (C.2)

where ω = K−⊤K−1 is the conic coefficient matrix.

We have

K−1 =
1

f











1 cos θ
r
−u0 − v0 cos θ

r

sin θ
r

−v0 sin θ
r

f











, (C.3)
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and it follows that

ω ∼ K−⊤K−1 (C.4)

∼











1

cos θ
r

sin θ
r

−u0 − v0 cos θ
r

−v0 sin θ
r

f





















1 cos θ
r
−u0 − v0 cos θ

r

sin θ
r

−v0 sin θ
r

f











(C.5)

=











1 cos θ
r

−u0 − v0 cos θ
r

cos θ
r

1
r2 −v0

r2 − u0 cos θ
r

−u0 − v0 cos θ
r

−v0

r2 − u0 cos θ
r

u2
0 + 2u0v0

cos θ
r

+
v2

0

r2 + f2











. (C.6)

Substituting the expression of ω in Eq. (C.2) and noting p = [u, v, 1]⊤, the following equation

is obtained after simplification:

(u− u0)
2 +

1

r2
(v − v0)

2 + 2
cosθ

r
(u− u0)(v − v0) = −f2 . (C.7)



Appendix D

Equation of the perpendicular

bissector to a chord on the IAC

We consider a pair of images of circular points P = HI = h1 + ih2 and Q = HJ =

h1 − ih2 on the the Image of the Absolute Conic (IAC), with h1 = [h11, h21, h31]
⊤ and

h2 = [h12, h22, h32]
⊤. We want to compute the equation of the perpendicular bisector to this

chord after the image transformation T has been applied.

We first observe that the mid-point of [PQ] is the point:

M ∼ 1

h2
31 + h2

32

(h31h1 + h32h2) =











m1

m2

1











, (D.1)

and the direction of the line (PQ) is represented by the Point at Infinity (PI):

D ∼ h32h1 − h31h2 =











d1

d2

0











. (D.2)

This can be verified by noting that the points M , D, P and Q are aligned (they are linear

combinations of the base vectors h1 and h2) and that they are harmonic (their cross ratio is

−1). It should be noted that the denominator in the expression of M is non-zero if and only if

the optical axis of the camera is not orthogonal to the image plane. Four new parameters m1,

m2, d1 and d2 have been introduced in the two previous equations.
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After transformation by T , M and D are mapped respectively into

M ′ = T











m1

m2

1











=











m1 + t1m2 + t2

t3m2 + t4

1











, (D.3)

and

D′ = T











d1

d2

0











=











d1 + t1d2

t3d2

0











. (D.4)

Noting that a normal vector to (P ′Q′) is N = [−t3d2, d1 + t1d2, 0]⊤, we conclude that the

perpendicular bisector to the chord is represented by the equation

l =











−(d1 + t1d2)

−t3d2

(m1 + t1m2 + t2)(d1 + t1d2) + (t3m2 + t4)t3d2











. (D.5)



Appendix E

Simplification of the cost function

based on the radiometric distance

We would like to compute the values n and {̂ilj}j which minimise the cost function

F (n, {̂ilj}j) =
∑

j

[

(̂ilj − ilj )
2 +

(

slj · n
srj
· n îlj − irj

)2
]

. (E.1)

We start by writing the partial derivatives of F with respect to îlj :

∀j,
∂F (n, {̂ilj}j)

∂îlj
= 2(̂ilj − ilj ) + 2

slj · n
srj
· n

(

slj · n
srj
· n îlj − irj

)

, (E.2)

and observe that they are equal to zero at the optimum value, which leads to the constraints:

∀j, îlj +

(

slj · n
srj
· n

)2

îlj = ilj +
slj · n
srj
· n irj

. (E.3)

From each constraint, we can deduce the expression of îlj at the optimum:

∀j, îlj =

(

ilj +
slj · n
srj
· n irj

)

(srj
· n)2

(slj · n)2 + (srj
· n)2

, (E.4)

which after simplification can be written

∀j, îlj =
ilj (srj

· n)2 + irj
(slj · n)(srj

· n)

(slj · n)2 + (srj
· n)2

. (E.5)

We also compute the two following terms which will be useful next:

∀j,











îlj − ilj = − (slj
·n)[(ilj slj

−irj
srj

)·n]

(slj
·n)2+(srj

·n)2
,

slj
·n

srj
·n îlj − irj

=
(srj

·n)[(ilj slj
−irj

srj
)·n]

(slj
·n)2+(srj

·n)2
.

(E.6)
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In addition, the partial derivative of F with respect to the surface normal n is

∂F (n, {̂ilj}j)
∂n

= 2
∑

j

[(

slj · n
srj
· n îlj − irj

)

îlj
∂

∂n

(

slj · n
srj
· n

)]

. (E.7)

which, after observing that
∂(s·n)

∂n
= s, simplifies to:

∂F (n, {̂ilj}j)
∂n

= 2
∑

j

[(

slj · n
srj
· n îlj − irj

)

îlj
(srj
· n)slj − (slj · n)srj

(srj
· n)2

]

. (E.8)

All variables îlj can be eliminated from this expression by substituting the terms defined in the

system of equations (E.6), which results in:

∂F (n, {̂ilj}j)
∂n

= 2
∑

j

[

(srj
· n)[(iljslj − irj

srj
) · n]

(slj · n)2 + (srj
· n)2

· · ·

(

ilj −
(slj · n)[(iljslj − irj

srj
) · n]

(slj · n)2 + (srj
· n)2

)

(srj
· n)slj − (slj · n)srj

(srj
· n)2

]

. (E.9)

After simplification, we finally obtain:

∂F (n, {̂ilj}j)
∂n

= 2
∑

j

[(iljslj − irj
srj

) · n][(iljsrj
+ irj

slj ) · n][(srj
· n)slj − (slj · n)srj

]

[(slj · n)2 + (srj
· n)2]2

.

(E.10)

At the optimum, n must satisfy the constraint
∂F (n,{̂ilj }j)

∂n
= 0. This defines a system of three

non-linear equations with unknowns the three components of n (there are actually only two

unknowns since the scale of n can be arbitrary). We could solve directly this system.

Alternatively we can define an auxiliary cost function G which depends only on n, by sub-

stituting the terms defined in the system of equations (E.6), into the original cost function F ,

which leads to:

G(n) =
∑

j

[(iljslj − irj
srj

) · n]2

(slj · n)2 + (srj
· n)2

. (E.11)

It is easy to verify that
∂F (n,{̂ilj }j)

∂n
= ∂G(n)

∂n
, thus F and G have the same minimum. Therefore,

the solution to the original problem can be found by minimising G. We found this preferable to

solving the non-linear system of equations defined in
∂F (n,{̂ilj }j)

∂n
= 0, because the equations

involved are simpler, and also because it is more similar to the problems solved in other chap-

ters, which means that similar methods can be applied. Such a solution can be computed by

using a non-linear minimisation technique such as the Levenberg-Marquardt (LM) algorithm.
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