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Abstract

The majority of camera calibration methods, including the Gold Standard algorithm, use point

based information and simultaneously estimate all calibration parameters. In contrast, we propose a

novel calibration method that exploits line orientation information and decouples the problem into two

simpler stages. We formulate the problem as minimisation of the lateral displacement between single

projected image lines and their vanishing points. Unlike previous vanishing point methods, parallel line

pairs are not required. Additionally, the invariance properties of vanishing points mean that multiple

images related by pure translation can be used to increase the calibration dataset size without increasing

the number of estimated parameters. We compare the method with vanishing point methods and the

Gold Standard algorithm and demonstrate that it has comparable performance.

Index Terms

Computer Vision, Camera Calibration, Invariants.

I. INTRODUCTION

Camera calibration is the determination of parameters representing geometric properties of

the imaging process. These parameters are constrained by equations linking the coordinates of

3D points and their projections. In general, information about the geometry in the image and

the camera motion can be used to simplify camera calibration equations. For example, in [4],

[6]–[9], [11], [20], [31], [32], vanishing points (VPs) and vanishing lines have been used to

compute intrinsic and rotation parameters in a first stage, while the remaining parameters can

be computed by solving a system with reduced degrees of freedom in a second stage. Similarly,

specific controlled motions have been used in [9], [27], [30] to decompose the camera calibration

process into a series of steps that are simpler than the full camera calibration method.

This paper considers the problem of decoupling translation from the other camera parameters

by invariance properties. There are two main motivations. Firstly, decomposition in the parameter

space leads to simpler sub-problems. Secondly, if translation is decoupled, data from additional

images obtained by translation does not introduce additional parameters to the problem. That

is, data size can be increased, and thereby estimation accuracy, without increasing the problem

dimensionality. The idea of parameter decomposition, has been used in other areas of computer

vision. In [2], it was shown that for two collections of 3D points related by a rotation and

translation, the estimation of the motion can be decoupled based on the properties of the centroid.

A similar problem for 2D motion projections is described in [19] and [23]. In the case of

motion estimation from line correspondences, direction of lines have been used to compute the
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rotational part of the transformation [3]. Additionally, work on shape matching has considered

the decomposition of rotation and translation for a 2D transformation of planar shapes [1].

Our approach presents some similarities with previous methods based on vanishing points [4],

[6]–[9], [11], [20], [31], [32]. VPs have strong invariance properties, however, there are usually

not many in images and they are difficult to compute. Even if considerable effort has been

directed towards their estimation [24], existing VP based calibration methods usually require

pairs of parallel scene lines to define VP location. In contrast, our approach computes points at

infinity from arbitrary single straight lines in the scene, and formulates a novel constraint which

relates single line orientation to the projections of the points at infinity (VPs). Thus, equations

linking scene and image data can be expressed independently of translation. Methods that use

lines for the estimation of motion and structure have been previously considered in [21], [33]. A

discussion of the advantages of the use of lines in terms of accuracy in measurements is given

in [33]. If orientation of lines can be more accurately and reliably measured than point location,

then this results in more accurate features. In an implementation, straight lines can be defined by

edges in the scene or by pairs of points; generally their number exceeds the number of parallel

scene line pairs or usable distinguished image points (such as corners) that are necessary for

many other calibration methods.

In Section II, we consider the use of points at infinity in the inverse image formation problem

and define an invariant for the equations linking the coordinates of 3D points and their projections.

Section III formulates the two stage camera calibration procedure based on this invariant. Finally

experimental results with synthetic and real data are discussed in Section IV.

II. INVERSE IMAGE FORMATION AND POINTS AT INFINITY

In the image formation process with a standard pinhole camera model, 3D scene points

P i = (X,Y, Z, 1)⊤ are mapped into 2D image points pi = (u, v, 1)⊤ by a perspective projection

pi ∼ K [R |t]P i, with K =











f −f cot θ u0

fr/ sin θ v0

1











. (1)

The symbol ∼ denotes equality up to a non-zero scale factor. K represents the intrinsic param-
eters, which include the coordinates of the principal point (u0, v0), the focal length f in pixel

units, the aspect ratio r, and the skew angle θ defined by the two axes of the camera. In practice,

August 17, 2004 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

θ is significant for CCD and optical cameras only (θ = 90◦ for digital cameras). Additionally,

r is expected to be close to 1, however should be computed for an accurate calibration. The

extrinsic parameters represent the camera orientation (rotation matrix R) and position (translation

vector −R
⊤t) with respect to the world reference frame.

The inverse image formation problem consists in finding the val-
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Fig. 1. Projection of a pair of

3D points in an image. The pair

of 3D points {P i, P j} defines a
direction which is represented by a

point Dij in the plane at infinity

π∞. This point projects into a VP

vij which is constrained to lie on

the image line (pipj).

ues that minimises

∑

i

d(pi, K [R |t]P i)
2, (2)

where d defines a geometric distance. This can be generalised to a

sequence of images by extending the sum to all the images. This cost

function is called the reprojection error, its minimisation leads to the

Maximum Likelihood (ML) estimate under some standard hypothe-

ses on the noise distribution (measurement errors are Gaussian, see

e.g. [18], pp86–87). When camera motion is considered, the solution

involves a large number of parameters. However, if invariants are

used, it can be simplified such that the minimum depends only on

a subset of the parameters. For example, VPs can be used to decouple intrinsic and extrinsic

parameters. Contrary to previous methods using VPs [4], [6], [8], [20], the decomposition we

propose does not require any specific pattern such as parallel lines, but can be implemented from

arbitrary lines or pairs of points in a known scene.

A 3-D point with Euclidean coordinates (X,Y, Z)⊤ is mapped to a point in the projective space

with homogeneous coordinates λ(X,Y, Z, 1)⊤ (λ 6= 0). Inversely, a point with homogeneous

coordinates (X,Y, Z,W )⊤ (W 6= 0) is mapped back to the point with Euclidean coordinates

(X/W, Y/W,Z/W )⊤. If W = 0, the point is at infinity. These points define the plane at infinity

representing the directions of the underlying affine space [12], e.g. (VX , VY , VZ , 0)⊤ represents

the direction parallel to the vector (VX , VY , VZ)⊤. The projection of a point at infinity in an image

is a VP. An important property is that they are independent of camera translation. Intuitively,

one can compare them to stars in the sky or points far away on the horizon, which stay fixed

as an observer moves in the scene. Points at infinity are defined by the direction of straight

lines in the scene. If we consider a pair of points P i = (Xi, Yi, Zi,Wi)
⊤ (Wi 6= 0) and P j =

(Xj, Yj, Zj,Wj)
⊤ (Wj 6= 0), the direction of the line (P iP j) is represented by the point at
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infinity Dij = WiP j −WjP i, which can be written in the form Dij = (d⊤
ij, 0)⊤. The projection

of Dij into the image defines a VP vij ∼ K [R |t]Dij = KRdij which is translation invariant.

Since an homography preserves collinearity, vij must lie on the line (pipj) (see Fig. 1), that is

l⊤ijvij = 0, where lij ∼ pi × pj is the homogeneous representation of (pipj). With the notation

H = KR , we can obtain an equation independent of the translation

l⊤ijHdij = 0. (3)

Thus the problem in (2) can be reformulated in terms of the minimisation of
∑

i,j d(lij, Hdij)
2.

Once the rotation has been determined, the translation can be computed by considering (1) for

a known R . As such, the original minimisation problem can be divided into two sub-problems.

III. APPLICATION TO CAMERA CALIBRATION

We consider the general problem of computing all the camera parameters from one or several

images related by a translation, using a known camera calibration object. The system has 8+3n

unknowns (where n is the number of images): 5 for K , 3 for R and, for each frame, 3 for t.

In general, when correspondences between 3D points and their images are known, the camera

parameters can be computed simultaneously by solving for a matrix M = K [R |t] satisfying
pi ∼ MP i for each world to image point correspondence. The procedure is called resectioning

and requires 5 1
2
point correspondences in a general position. Once M is estimated, the individual

camera parameters can be recovered by matrix decomposition [18] (p150).

Alternatively, the results of Section II can be used to decompose the full parameter space

into two smaller sub-systems. The first one contains only the parameters from K and R (8

parameters), whereas the second one contains the remaining parameters from t (there are n

independent systems of 3 parameters, one for each image). Thus we define two simpler problems:

1) Intrinsic parameters and orientation estimation: Given a set of world directions dij and

the associated image lines lij , compute a 3× 3 full rank matrix H = KR such that l⊤ijHdij

is minimised for each (i, j).

2) Position estimation: Given a set of world to image point correspondences P i ↔ pi, and

two known matrices K and R , compute a vector t such that pi ∼ K [R |t]P i for each i.

The 3 × 3 matrix H defined in 1) is the homography between the plane at infinity and the

image plane. Once H is known, K and R can be recovered by a simple RQ decomposition
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[18] (p150). However, 1) is different from a simple homography estimation problem. Namely,

we do not have a strict correspondence, but only a constraint that establishes that a VP should

lie on the image line. This is fundamentally different to other camera calibration methods that

propose computing the VPs from parallel lines before estimating the camera parameters [4],

[6]–[9], [11], [20], [31], [32]. It should also be noted that the equations defined in 1) are similar

to the estimation of the fundamental matrix via the 8-point algorithm [15]. In the case of the

fundamental matrix estimation however, the solution matrix must be degenerate to satisfy the

singularity constraint (rank 2), whereas in our case a full rank matrix (rank 3) is sought. Problem

2) can be solved in a straightforward manner using simple least-square techniques, therefore we

focus on solving 1) in the rest of the paper.

A. Practicality

Problem 1) uses only the directional information contained in the scene, derived from 3D lines

with known direction, or pairs of known 3D points. One practical advantage of the decomposition

method is that it can be used in situations where only directional information is present in the

scene, this is for example the case for architectural applications [8], [20], wherein direction are

defined by building edges. The method is also useful in other situations when one is interested

only in the intrinsic parameters or in the orientation of the camera. Another advantage over

standard camera resectioning is that when multiple images obtained from a purely translating

camera are used, data size is increase, without requiring to compute additional translation

parameters. Accurate calibration can therefore be done from directional information only. If

all the camera parameters are required, a full camera calibration is performed by solving both

problems separately. In that case Problem 1) still uses only directional information, while Problem

2) requires additional information, such as points correspondences.

B. Linear Solution

In comparison to non-linear methods, linear methods are significantly faster and easier to

implement. Writing lij = (lijx
, lijy

, lijz
)⊤ and dij = (dijx

, dijy
, dijz

)⊤ and denoting by h the

entries of H in row major order, a straightforward development of (3) leads to

(lijx
d⊤

ij, lijy
d⊤

ij, lijz
d⊤

ij)h = aijh = 0. (4)
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From a set of n directions, a n × 9 matrix A is obtained by stacking up the terms aij from (4)

for each direction. The vector h is then computed by solving the linear system Ah = 0 using for

example Singular Value Decomposition as described in [18] (pp166–169); the solution obtained

minimises ‖Ah‖ subject to the constraint ‖h‖ = 1. A may have a very large number of rows.

For a memory efficient implementation, A can be transformed into a smaller dimension matrix

Â as follows. A is written in the form A = [A1, . . . , AN ]⊤. Denoting by Âi the 9 × 9 reduced

measurement matrix of each block matrix Ai (see [18] p175 for a definition), we can define

Â = [Â1, . . . , ÂN ]⊤. The matrix Â has dimension 9N × 9 (with N ≪ n) and it can be shown

that it satisfies ‖Ah‖ = ‖Âh‖, allowing A to be substituted by Â. The system has 8 unknowns

(H has 9 entries, but it is defined up to a non zero scale factor) and each point at infinity leads

to one equation, therefore a minimal solution is obtained from 8 directions in a general position.

The term general position will be made clearer in Section III-D.

Without normalisation of the input data, the previous algorithm may be ill-conditioned and

thereby perform poorly. Here we follow a similar normalisation scheme as in the original work

from Hartley in the case of the computation of the fundamental matrix [15] and camera calibration

[17]. lij are normalised such that their centroid is the coordinate origin (0, 0)⊤ and the average

distance from the origin is
√

2. dij may be at or near infinity, therefore a different normalisation

strategy must be used in this case, e.g. see [18] (pp113–114). We carried out an isotropic

normalisation; dij are normalised such that their homogeneous coordinates (Uij, Vij,Wij) satisfy
∑

ij Uij =
∑

ij Vij = 0,
∑

ij U2
ij =

∑

ij V 2
ij =

∑

ij W 2
ij , and ∀i, j U 2

ij + V 2
ij + W 2

ij = 1.

C. Minimisation of a geometric distance

The linear solution is computationally attractive. However, it presents some limitations such as

the non-invariance to the coordinate reference frame, which required us to introduce normalisa-

tion. Another criticism of this method is that it minimises a term called algebraic distance, which

has little physical meaning. In this section, a non-linear method which minimises a geometric

distance is introduced. The geometric distance dgeom from a VP v with homogeneous coordinates

(u, v, w)⊤ (w 6= 0) to the corresponding line l with homogeneous coordinates (a, b, c)⊤ is

dgeom(v, l) =
1√

a2 + b2

∣

∣

∣
a

u

w
+ b

v

w
+ c

∣

∣

∣
. (5)

Direct minimisation of the sum of squared geometric distance can lead to inaccurate results

because all the measurements do not have the same confidence. For example, shorter image
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segments lead to larger errors in the computation of line coordinates, or scene directions nearly

parallel to the image plane lead to VP far away from the image centre, and therefore larger

errors in the computation of dgeom. Thus we adopt a cost function dmah based on the Mahalanobis

distance with respect to the error covariance associated to each measurement. In this case, the

error covariance is the variance σ2
geom associated to dgeom, and the cost function is

dmah(v, l) =
1

σgeom
dgeom(v, l). (6)

The exact computation of σgeom is complicated as v = Hd depends on H , whose parameters are

unknown. We make the assumption that the error is due only to the uncertainty in the image line

extraction. Physically, this means that either the camera calibration object used is engineered

with a very good accuracy compared to the accuracy of the extraction of the image data, or

that the accuracy is the same for all 3D points, which is a reasonable assumption. Using error

propagation [13], [18] (pp123–125), we approximate up to a first-order the variance of dgeom by

σ2
geom = JΣJ

⊤, where Σ is the covariance matrix of the image lines l and J = [
∂dalg

∂a
,

∂dalg

∂b
,

∂dalg

∂c
]

is the Jacobian matrix of dgeom evaluated at (v, l). We assume that each coordinate of the end

points (x1, y1, 1)⊤ and (x2, y2, 1)⊤ of l are independent variables following Gaussian distributions

with mean the exact coordinate value and standard deviation σ. After expansion, we obtain:

Σ = σ2











2 0 −x1 − x2

0 2 −y1 − y2

−x1 − x2 −y1 − y2 x2
1 + x2

2 + y2
1 + y2

2











, J = 1√
a2+b2

[ u
w
−a(a u

w
+b v

w
+c)

a2+b2
, v

w
− b(a u

w
+b v

w
+c)

a2+b2
, 1].

dmah is non-linear. A solution can be computed by using standard non-linear minimisation

algorithms, such as the Levenberg-Marquardt algorithm [22] initialised with the result of the

linear method. In the implementation, a suitable parametrisation for the rotation is for example

a three-vector using the Rodrigues formula as described in [28]: the three parameters define a

vector parallel to the rotation axis whose magnitude is the rotation angle [12].

D. Degenerate Configurations

It was seen in Section III-B that a minimum of eight world directions dij and their associated

image lines lij in a “general position” are necessary to compute H . We clarify here what is

meant by “general position” and compare the degeneracies obtained with the case of camera

resectioning [5] [18] (chapter 21). We suppose here that there are at least eight correspondences
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Fig. 2. The “rank 1” degenerate configurations. The 3D lines

either form a Linear Line Complex with a ray R going through
the camera centre c (e.g. D1, D2, D3), or are parallel to a plane

P (e.g. D4, . . . , D8).

Fig. 3. Camera image of a sample “rank 2” degenerate

configuration. Contrary to the “rank 1” case, there is no

simple geometric pattern characterising the arrangement

of the 3D lines and the pose of the camera.

and study the degeneracies with a single camera; the case of multiple translated cameras is

treated analogously to a single camera if we introduce translated 3D lines in the scene.

We begin by reminding that an image is determined up to projectivity by the camera centre

alone (see [18], p517), thus all the parameters of the camera, except the camera centre, can

be ignored in the characterisation of the degeneracies. Let us now suppose that there is a

degeneracy. There exists two distinct rank 3 matrices H and H
′ satisfying (3) for all (i, j).

It results immediately from the bilinearity of (3) that Hθ = H + θH ′ (θ is a scalar) is also

solution. However the determinant of this matrix det(Hθ) is a polynomial of degree 3 in θ, thus

it has at least a real solution θ0 (θ0 6= 0, otherwise Hθ = H and it follows that Hθ is rank

3 like H , which contradicts the fact its determinant is zero). Hθ0
does not have full rank, i.e.

rank(Hθ0
) ≤ 2, because by construction det(Hθ0

) = 0. In addition, it is clear that rank(Hθ0
) 6= 0,

otherwise there would exist a non zero θ such that H + θH ′ = 0, i.e. H ∼ H
′, which contradicts

the original assumption that the solutions are distinct. We conclude that there exists a matrix

Hθ0
which is rank 1 or 2. According to this rank, we obtain two types of degeneracies. These

configurations can occur for any number of 3D lines (not restricted to the minimum case of

eight lines) as long as the features are arranged according to the patterns described below.

A “rank 1” degeneracy occurs if there exists a ray R going through the camera centre and a
plane P such that all the 3D lines either intersect R or are parallel to P (see Fig. 2). The set
of 3D lines intersecting at a common line R forms a pattern called Linear Line Complex (see
[26]). In this case, the degenerate solution matrix can be written in the form Hθ = rd⊤, where d
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is a 3-vector orthogonal to the null-space of Hθ and r is a 3-vector in the span of Hθ. Replacing

in (3), we obtain l⊤ijrd⊤dij = 0, i.e. l⊤ijr = 0 or d⊤dij = 0. l⊤ijr = 0 means that the point r

belongs to the image line, i.e. the 3D line intersects the ray R obtained by back projecting r.

d⊤dij = 0 means that the 3D line intersects the plane at infinity in the line d, if we call P any
plane intersecting the plane at infinity in d, it results that the 3D line is parallel to P .
It is difficult to give a simple geometric characterisation of the “rank 2” degeneracy but our

experience is that this configuration is rather unlikely to happen in human engineered patterns.

We show an image of a sample “rank 2” degenerate configuration generated with MatlabTM in

Fig. 3. We now give an interesting analogy with camera resectioning. In that case, the most

important degenerate configurations arise when i) the points all lie on the union of a plane and a

single straight line containing the camera centre, or ii) the camera and points all lie on a twisted

cubic (see [18], chapter 21, for an exhaustive enumeration). It is straightforward that case i)

results in our “rank 1” degenerate configuration when pairs of points are taken to form lines.

Computer simulations showed that case ii) results in the “rank 2” degenerate configuration.

E. Constrained Camera Calibration

Until now, we have considered a general projective camera. In the case of restricted cameras,

for example zero-skew, known aspect ratio, known principal point or known intrinsic parameters,

the camera calibration is still possible by minimising either a geometric error or an algebraic

error. The geometric error is minimised by optimising the camera parameters to be estimated,

while the other constraints are enforced. An algebraic error (which leads to a smaller size

minimisation) can be minimised by defining a reduced measurement matrix as described in [17].

IV. RESULTS

In this section, the decomposition method is evaluated with images of a calibration grid.

Three different implementations are considered: linear method (using SVD decomposition) with

normalisation, linear method without normalisation, and non-linear method (using Levenberg-

Marquardt method). In the figures, the different methods are respectively labelled decomposition

(norm. linear), decomposition (linear) and decomposition (non-linear). In addition, we include

the results of two classical camera calibration methods described below.
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Camera calibration from point correspondences [17], [18]. The algorithm was implemented

with a non-linear minimisation (bundle adjustment) using Levenberg-Marquardt algorithm, and

initialised by the linear solution obtained from SVD decomposition with preliminary normalisa-

tion of the data. This is a standard camera calibration technique described in [18] (p170) as the

Gold Standard Algorithm. The graphs corresponding to this method are labelled standard.

Camera calibration from VPs [6], [8], [20]. VPs are computed from the intersection of parallel

lines. Three sets of mutually orthogonal parallel lines define three VPs which can be used to

compute the intrinsic parameters (assuming zero skew and a known aspect ratio) and the rotation.

We use a linear algorithm with normalisation [16]. The translation is recovered by considering

additional point correspondences. The graphs corresponding to this method are labelled vanishing

or vanishing (aspect ratio = 1). In the first case, the aspect ratio is obtained from the standard

calibration method, in the second case the aspect ratio is assumed to be 1.

Experiments were performed with synthetic and real data. In both cases, a calibration grid

made of two orthogonal planes was used. The directions required for the decomposition method

were obtained by considering pairs of points. The set of parallel lines required for calibration

from VPs is obtained by least-square fitting a line to each set of aligned points defined by

the grid. The common criteria chosen for the evaluation of each algorithm is the Root Mean

Squared (RMS) point reprojection error defined by ǫrep =
√

1
N

∑

i d(pi, K [R |t]P i)2. In order

to obtain less biased results, we use different points for error measure evaluation and camera

calibration. The points used to compute the reprojection error are contained in a third plane

orthogonal to the two other calibration planes. It should be noted that the reprojection error thus

defined is different from the cost function minimised by the non-linear decomposition method,

thus it may not necessarily show a reduction in the error when comparing the linear with the

non-linear decomposition method. In the case of simulations with synthetic data another criteria

called RMS estimation error is used to evaluate the accuracy of the computation of the camera

parameters. It is defined by ǫest =
√

1
N

∑

i(x − x)2 where x is the ground truth parameter and

x is the estimated parameter.

A. Synthetic data

Each plane in the synthetic grid contains 36 control points. The virtual camera has the

following parameters: u0 = 384 pixels, v0 = 247 pixels, f = 714.3 pixels, r = 1.167, and θ =
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Fig. 4. RMS estimation error for each parameter with respect to the number of frames considered in the case of synthetic

experiments of camera calibration with a translating camera (the noise level is σ = 1 pixel). The results were obtained from
100 experiments.

1.570 rad. We have tested the decomposition method in the context of camera calibration when a

pure translation motion is generated. We generate a sequence of 10 images separated by such a

motion. To study the influence of the number of frames, subsets of 1 to 8 images are randomly

selected, and the camera calibration is performed with the images selected. The experiments are

repeated 100 times for each size of the subset. Fig. 4 shows the RMS estimation error for each

of the intrinsic parameters and Fig. 5 shows the RMS point reprojection error with respect to the

number of frames considered. The noise level of the Gaussian noise was set to σ = 1 pixel and

no information about the translation was used. The RMS point reprojection error for the different

methods decreases rapidly when the number of frames increases and seems to converge to some

asymptotic values. It can be observed that the normalised method leads to more accurate results

than the non-normalised one. The non-linear method seems accurate but it does not give the

expected improvement in accuracy over the linear methods. The decomposition method appears

to be slightly more accurate than the other methods when the number of frames is increased.

It is interesting to compare the asymptotic values observed with the RMS point reprojection

error for the ML estimator which represents the minimum error under some standard Gaussian

hypotheses on the noise distribution and is given by ǫML = σ [11/(2 × 36)]1/2 ≈ 0.391 (see

[18], p121). The asymptotic values observed seem to be close to this limit value, especially in
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TABLE I

ESTIMATED INTRINSIC PARAMETERS WITH 8 FRAMES IN THE CASE OF REAL EXPERIMENTS OF CAMERA CALIBRATION

WITH A TRANSLATING CAMERA. FOR EACH OF THE THREE METHODS THE MEAN VALUE AND THE STANDARD DEVIATION

OBTAINED FROM 100 EXPERIMENTS ARE GIVEN.

u0 (pixels) v0 (pixels) f (pixels) r θ (rad)
mean 327.4 257.0 695.3 1.107 1.574

standard
std 0.231 0.230 0.821 0.326 × 10−3 0.252 × 10−3

vanishing point mean 329.6 257.5 695.4 1.107 1.571

(aspect ratio from standard method) std 1.019 0.275 0.838 0.370 × 10−3 0

vanishing point mean 321.1 325.3 676.9 1.000 1.571
(aspect ratio enforced to 1) std 0.812 0.349 0.840 0 0

decomposition mean 326.7 258.4 696.0 1.107 1.574

(linear) std 0.282 0.740 0.598 0.365 × 10−3 0.160 × 10−3

decomposition mean 326.6 257.6 695.2 1.107 1.574

(norm. linear) std 0.272 0.568 0.627 0.341 × 10−3 0.152 × 10−3

decomposition mean 326.6 257.6 695.2 1.107 1.574

(non-linear) std 0.270 0.568 0.625 0.337 × 10−3 0.153 × 10−3
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Fig. 5. RMS point reprojection error with respect to

the number of frames considered in the case of synthetic

experiments of camera calibration with a translating camera

(the noise level is σ = 1 pixel). The results were obtained
from 100 experiments.
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Fig. 6. RMS point reprojection error with respect to the

number of frames considered in the case of real experiments

of camera calibration with a translating camera. The results

were obtained from 100 experiments. The graph correspond-

ing to the vanishing point method with an aspect ratio

assumed to be 1 lead to large RMS point reprojection error

of the order of 15 which are not visible in the figure.

the case of the decomposition method, which suggest the algorithm is performing well.

B. Real data

A sequence of 20 images of a grid was produced with a Pulnix TMC-7DSP camera equipped

with a 6mm lens. The calibration grid was made of three planar grids, each containing 36 control

points generated by a printer, which were positioned on three mutually orthogonal planes. The
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coordinates of the control points were verified with a measuring tape, the accuracy is estimated

to be of the order of one millimetre. The coordinates of the images of the control points have

been computed using a Harris corner detector [14]. The camera is mounted on a robot arm that

is used to generate a pure translation motion. The images obtained present some lens distortion.

In this case, only the radial distortion is corrected, and a first order coefficient appears to be

sufficient [29]. Here the lens distortion can be appropriately calibrated from the image of lines,

by requiring them to be straight. This technique is known as the plumb-line method in the

photogrammetry literature [25]; an implementation for computer vision is presented in [10]. For

active camera calibration, random subsets of frames were selected, and for each subset size, 100

experiments were run. The mean and the standard deviation were computed for each number

of frames considered. Table I compares the values obtained for each parameter for the different

methods considered. Fig. 6 shows the RMS point reprojection error.

It can be seen that the accuracy of the methods increase with the number of frames. The

decomposition method and the method computing VPs (with the aspect ratio obtained from

the standard method) perform better than the method using point correspondences. With the

method using point correspondences, the size of the parameter space increases each time a new

frame is added. For example, if n frames are considered, then there are 8 + 3n parameters to

estimate (5 intrinsic plus 3 for the orientation, and 3 for the position of the camera corresponding

to each frame). When the size of the parameter space increases, the risk of being trapped in

a local minimum increases and it becomes less likely to converge to the global optimum. In

comparison, for the decomposition method and the method computing vanishing points the size of

the parameter space remains fixed for the first stage (8 parameters). Similarly to the synthetic data

analysis, the linear method with normalisation is more stable than the non-normalised solution.

In the particular case where the method using VPs is provided with the aspect ratio obtained

from the standard method, it gives more accurate results than the other methods. However, the

method computing VPs has some limitations: i) it assumes the camera has zero skew, ii) it

requires to provide a value for the aspect ratio. The zero-skew assumption is correct for a digital

camera, however does not hold for all CCD cameras. Some inaccuracies are expected if the

vanishing point method is provided with an incorrect value for the aspect ratio. For example,

it can be seen in Fig. 6 that the method performs poorly when initialised with an aspect ratio

of one, which is however a reasonable value for most CCD cameras. It is possible to provide a
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better value for the aspect ratio, e.g. by using the non-linear standard camera calibration method,

but it requires to run another preliminary calibration algorithm.

Overall if we compare the results of synthetic and real data, it can be seen that the decompo-

sition method usually performs better than the other methods when multiple frames are used. It

can be noticed that in some cases the non-linear decomposition method is actually less accurate

than the linear one. From a theoretical point of view, there is no reason for the non-linear method

to be more accurate since the cost functions used are different (see introduction of this section).

Practically, the results observed are very close and the discrepancy are not significant; they

could be due to the approximations performed when formulating the non-linear cost function or

to different noise conditions in synthetic and real experiments.

V. CONCLUSIONS

We have shown that points at infinity can be used to decouple translation and rotation from

equations linking the coordinates of 3D points and their perspective projections. Directions in

the scene represent points at infinity that project to VPs. Thus, the resulting equations are

independent of translation. We have shown that this property can be used to split the parameter

search in camera calibration. Additionally, we have shown how translational motion can be used

to increase the amount of data for camera calibration without increasing the dimensionality of

the problem. Experiments show that, if several frames separated by a translation motion are

considered, the decomposition method performs generally better than the standard method or

the method computing VPs.
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