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Abstract
This paper introduces a general approach to dynamic

scene reconstruction from multiple moving cameras without
prior knowledge or limiting constraints on the scene struc-
ture, appearance, or illumination. Existing techniques for
dynamic scene reconstruction from multiple wide-baseline
camera views primarily focus on accurate reconstruction in
controlled environments, where the cameras are fixed and
calibrated and background is known. These approaches
are not robust for general dynamic scenes captured with
sparse moving cameras. Previous approaches for outdoor
dynamic scene reconstruction assume prior knowledge of
the static background appearance and structure. The pri-
mary contributions of this paper are twofold: an automatic
method for initial coarse dynamic scene segmentation and
reconstruction without prior knowledge of background ap-
pearance or structure; and a general robust approach for
joint segmentation refinement and dense reconstruction of
dynamic scenes from multiple wide-baseline static or mov-
ing cameras. Evaluation is performed on a variety of indoor
and outdoor scenes with cluttered backgrounds and multi-
ple dynamic non-rigid objects such as people. Comparison
with state-of-the-art approaches demonstrates improved ac-
curacy in both multiple view segmentation and dense re-
construction. The proposed approach also eliminates the
requirement for prior knowledge of scene structure and ap-
pearance.

1. Introduction
Reconstruction of general dynamic scenes is motivated

by potential applications in film and broadcast production
together with the ultimate goal of automatic understanding
of real-world scenes from distributed camera networks.

Over the past decades, effective approaches have been
proposed to reconstruct dense dynamic shape from wide-
baseline camera views in controlled environments with
static backgrounds and illumination. A common as-
sumption of widely used visual-hull based reconstruction
approaches is prior foreground/background segmentation,
which is commonly achieved using a uniform chroma-key
color background or background image plate. Alternatively,
multiple view stereo techniques have been developed which

Figure 1. General dynamic scene reconstruction (a) Multi-view
frames for Juggler dataset, (b) Segmentation of dynamic objects
and (c) Reconstructed mesh
require a relatively dense camera network resulting in large
numbers of cameras.

Recent research has applied multiple view dynamic
scene reconstruction techniques to less controlled outdoor
scenes. Initial research focused on reconstruction in sports
[10] exploiting known background images or the pitch color
to obtain an initial segmentation. Extension to more gen-
eral outdoor scenes [1, 15, 31] uses prior reconstruction of
the static geometry from images of the empty environment.
Research has also exploited strong prior models of dynamic
scene structure such as people or used active depth sensors
to reconstruct dynamic scenes.

This paper presents an approach for unsupervised dy-
namic scene reconstruction from multiple wide-baseline
static or moving camera views without prior knowledge of
the scene structure or background appearance. The input
is a sparse set of synchronised multiple view videos with-
out segmentation. Camera extrinsics are automatically cal-
ibrated using scene features. An initial coarse reconstruc-
tion and segmentation of all dynamic scene objects is ob-
tained from sparse features matched across multiple views.
This eliminates the requirement for prior knowledge of the
background scene appearance or structure. Joint segmenta-
tion and dense reconstruction refinement is then performed
to estimate the non-rigid shape of dynamic objects at each
frame. Robust methods are introduced to handle complex
dynamic scene geometry in cluttered scenes from indepen-
dently moving wide-baseline cameras views. The proposed
approach overcomes constraints of existing approaches al-
lowing the reconstruction of more general dynamic scenes.
Results for a popular dataset, Juggler [1] captured with a
network of moving handheld cameras are shown in Fig-
ure 1. The contributions are as follows:
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• Unsupervised dense reconstruction and segmenta-
tion of general dynamic scenes from multiple wide-
baseline views.
• Automatic initialization of dynamic object segmenta-

tion and reconstruction from sparse features.
• Robust spatio-temporal refinement of dense recon-

struction and segmentation integrating error tolerant
photo-consistency and edge information.

2. Related work
2.1. Dynamic scene reconstruction

Research on multiple view dense dynamic reconstruc-
tion has primarily focused on indoor scenes with controlled
illumination and backgrounds extending methods for mul-
tiple view reconstruction of static scenes [28] to sequences
[34]. In the last decade, focus has shifted to more chal-
lenging outdoor scenes captured with both static and mov-
ing cameras. Reconstruction of non-rigid dynamic objects
in uncontrolled natural environments is challenging due to
the scene complexity, illumination changes, shadows, oc-
clusion and dynamic backgrounds with clutter such as trees
or people. Initial research focused on narrow baseline stereo
[20, 18] requiring a large number of closely spaced cameras
for complete reconstruction of dynamic shape. Practical re-
construction requires relatively sparse moving cameras to
acquire coverage over large outdoor areas. A number of ap-
proaches for reconstruction of outdoor scenes require initial
silhouette segmentation [35, 15, 9, 10] to allow visual-hull
reconstruction. Recent research has proposed reconstruc-
tion from a single handheld moving camera given a strong
prior of bilayer segmentation [39]. Bi-layer segmentation
is used for depth-map reconstruction with the DAISY de-
scriptor for matching [13], results are presented for hand-
held cameras with a relatively narrow baseline.

Pioneering research in general dynamic scene recon-
struction from multiple handheld wide-baseline cameras
[1, 31] exploited prior reconstruction of the background
scene to allow dynamic foreground segmentation and re-
construction. This requires images of the environment cap-
tured in the absence of dynamic elements to recover the
background geometry and appearance.

Most of these approaches to general dynamic scene re-
construction fail in case of complex (cluttered) scenes cap-
tured with moving cameras. These approaches either work
for static/indoor scenes or exploit strong prior assumptions
like silhouette information, known background or scene
structure. Our aim is to perform dense reconstruction of
dynamic scene automatically without any prior knowledge
of background or segmentation of dynamic object.

2.2. Joint segmentation and reconstruction
Segmentation from multiple wide-baseline views has

been proposed by exploiting appearance similarity [6, 19,
38]. These approaches assume static backgrounds and dif-
ferent colour distributions for the foreground and back-

ground [27, 6] which limits applicability for general scenes.
In contrast to overcome these limitations, the proposed
approaches initialised the foreground object segmentation
from wide-baseline feature correspondence followed by
joint segmentation and reconstruction.

Joint segmentation and reconstruction methods incorpo-
rate estimation of segmentation or matting with reconstruc-
tion to provide a combined solution. The first multi-view
joint estimation system was proposed by Szeliski et al.[30]
which used iterative gradient descent to perform an energy
minimization. A number of approaches were introduced for
joint formulation in static scenes and one recent work used
training data to classify the segments [36]. The focus shifted
to joint segmentation and reconstruction for rigid objects in
indoor and outdoor environment. Approaches used a vari-
ety of techniques like patch based refinement [29, 25] and
fixation of cameras on the object of interest [5].

Practical application of joint estimation requires these
approaches to work on non-rigid objects like humans with
clothing. Recent work proposed joint reconstruction and
segmentation on monocular video achieving semantic seg-
mentation of scene but does not work with dynamic ob-
jects [17]. A multi-layer segmentation and reconstruc-
tion approach was proposed for sports data and indoor se-
quences [10] for multi-view videos. The algorithm used
visual hull as a prior obtained from segmentation of the dy-
namic objects. The visual hull was optimized by combina-
tion of photo-consistency, silhouette, color and sparse fea-
ture information in an energy minimization framework to
improve the segmentation and reconstruction quality. Al-
though structurally similar to our approach it requires a
background plate (assumed unknown in our case) as a prior
to estimate the initial visual hull by background subtrac-
tion. The probabilistic color models of foreground and
background are also used for optimization. A quantitative
evaluation of state-of-the-art techniques for reconstruction
from multiple views was presented by [28]. These methods
are able to produce high quality results, but rely on good
initializations and strong prior assumptions.

Image-based 3D dynamic scene reconstruction without
a prior model is a key problem in computer vision. This
research aims to overcome the limitations of the discussed
approaches enabling robust wide-baseline multiple view re-
construction of general dynamic scenes without prior as-
sumptions on scene appearance, structure or segmentation
of the moving objects. The approach identifies and obtains
an initial coarse reconstruction of dynamic objects automat-
ically which is then refined using geometry and appearance
cues in an optimization framework. The approach is a sig-
nificant development over existing approaches as it works
for the scenes captured only with moving cameras with un-
known background and structure. Existing state-of-the-art
techniques has not addressed this problem until now.



Figure 2. Dense dynamic reconstruction framework
3. Overview

The motivation of our work is to obtain automatic
dense reconstruction and segmentation of complex dynamic
scenes from multiple wide-baseline camera views without
restrictive assumptions on scene structure or camera mo-
tion. The proposed approach estimates per-pixel dense
depth with respect to each camera view of the observed
moving non-rigid objects in the scene. View-dependent
depth maps are then fused to obtain a reconstruction for
each dynamic object. An overview of the approach is pre-
sented in Figure 2 and consists of the following stages:
Data Capture: The scene is captured using multiple syn-
chronised video cameras separated by wide-baseline.
Calibration and sparse reconstruction: The intrinsics are
assumed to be known for the static cameras and extrin-
sics are calibrated using Fundamental matrix estimation for
pairs of images followed by bundle adjustment. Moving
cameras are calibrated automatically using multi-camera
calibration [12]. A sparse 3D point-cloud is then recon-
structed from wide-baseline feature matches.
Initial dynamic object segmentation and reconstruction:
Automatic initialisation is performed without prior knowl-
edge of the scene structure or appearance to obtain an initial
approximation for each dynamic object. Dynamic objects
are segmented from the sparse 3D point cloud by combin-
ing optic flow with 3D clustering (section 4).
Joint segmentation and reconstruction for each dynamic
object: The initial coarse reconstruction is refined for each
dynamic object through joint optimisation of shape and seg-
mentation using a robust cost function for wide-baseline
matching. View-dependent optimisation of depth is per-
formed with respect to each camera which is robust to er-
rors in camera calibration and initialisation. This gives a set
of dense depth maps for each dynamic object.
3D model generation and texture mapping: A single 3D
model for each dynamic object is obtained by fusion of the
view-dependent depth maps using Poisson surface recon-
struction [14]. Surface orientation is estimated based on
neighbouring pixels. Projective texture mapping is then per-
formed for free-viewpoint video rendering.
Dense reconstruction of sequence: The process above is

repeated for the entire sequence for all dynamic objects.
The proposed approach enables automatic reconstruction

of all dynamic objects in the scene as a 4D mesh sequence.
Subsequent sections present the novel contributions of this
work in initialisation and refinement to obtain a dense re-
construction. The approach is demonstrated to outperform
previous approaches to dynamic scene reconstruction and
does not require prior knowledge of the scene structure.

4. Initial dynamic object reconstruction
For general dynamic scene reconstruction, we need to re-

construct and segment the dynamic objects in the scene at
each frame instead of whole scene reconstruction for com-
putational efficiency and to avoid redundancy. This requires
an initial coarse approximation for initialisation of a sub-
sequent refinement step to optimise the segmentation and
reconstruction with respect to each camera view. We in-
troduce an approach based on sparse point cloud clustering
and optical flow labelling. This approach is robust to scene
clutter in the 3D point cloud segmentation and partial seg-
mentation of the dynamic object using optic flow due to par-
tial motion or correspondence failure. Initialisation gives a
complete coarse segmentation and reconstruction of each
dynamic object for subsequent refinement. The optic flow
and cluster information for each dynamic object helps us to
retain same labels for the entire sequence.
4.1. Sparse point cloud clustering

Feature detection is performed on all the multi-view im-
ages [24]. This is followed by SIFT descriptor based feature
matching [21] to obtain sparse reconstruction of the scene
using the calibration information [12] for each time instant.
This representation of the scene is processed to remove out-
liers using the point neighbourhood statistics to filter outlier
data [26]. To retrieve the sparse features corresponding to
the dynamic objects from the sparse reconstruction of the
scene, we classify this representation into clusters followed
by optical flow labelling. Data clustering approach is ap-
plied based on the 3D grid subdivision of the space using
an octree data structure in Eucildean space. In a more gen-
eral sense, nearest neighbors information is used to cluster,
that is essentially similar to a flood fill algorithm [26]. We
choose this because of its computational efficiency and ro-



Figure 3. Initial coarse reconstruction of the dynamic object in
Odzemok dataset

Figure 4. Initial coarse reconstruction: White line represents the
actual surface, Depth labels are represented as circles; blue circles
depict depth labels in DO , green circles depict depth labels in DI

and black circles depict the initial surface estimate.

bustness. The approach allows unsupervised segmentation
of dynamic objects and is proved to work well for cluttered
and general outdoor scenes as shown in Section 6.
4.2. Coarse scene reconstruction

Dynamic elements of the scene are identified by per-
forming optical flow [37] on consecutive frames for a single
view of each cluster. For each cluster the optimal camera
view is dynamically selected to maximise visibility based
on the sparse dynamic feature points at each frame. This
allows efficient selection of the best view for optical flow.
Optical flow is used to assign a unique label for each dy-
namic cluster throughout the sequence. If an object does
not move between two consecutive time instants the recon-
struction from this previous frame is retained. This lim-
its the dynamic scene reconstruction to objects which have
moved between frames reducing computational cost.
The process to obtain the coarse reconstruction is shown in
Figure 3 and 4. The sparse representation of dynamic ele-
ment is back-projected on the rectified image pair for each
view. Delaunay triangulation [7] is performed on the set of
back projected points for each cluster on one image and is
propagated to the second image using the sparse matched
features. Triangles with edge length greater than the me-
dian length of edges of all triangles are removed. For each
remaining triangle pair direct linear transform is used to es-
timate the affine homography [23]. Displacement at each
pixel within the triangle pair is estimated by interpolation
to get an initial dense disparity map for each cluster in the
2D image pair labelled as RI depicted in red in Figure 3
and 4. The region RI does not ensure complete coverage of
the object, so we extrapolate this region to obtain a region
RO (shown in yellow) in 2D by 5% of the average distance
between the boundary points(RI ) and the centroid of the
object. We assume that the object boundaries lie within the
initial coarse estimate and depth at each pixel for the com-
bined regions may not be accurate. Hence, to handle these

errors in depth we add volume in front and behind of the
projected surface by an error tolerance (calculated experi-
mentally), along the optical ray of the camera. This toler-
ance may vary if a pixel belongs to RI or RO as the prop-
agated pixels of the extrapolated regions (RO) may have
a high level of errors compared to error at the points from
sparse representation (RI ) requiring a comparatively higher
tolerance. The calculation of threshold depends on the cap-
ture volume of the datasets and is set to 1% of the capture
volume for RO and half the value for RI . This volume
in 3D corresponds to our initial coarse reconstruction of the
dynamic object and enables us to remove the dependency of
the existing approaches on background plate and visual hull
estimates. This process of cluster identification and coarse
reconstruction can be performed for multiple dynamic ob-
jects in the complex general environments. Initial dynamic
object segmentation using point cloud clustering and coarse
segmentation is insensitive to parameters. Throughout this
work the same parameters are used for all datasets.

5. Joint segmentation and reconstruction
5.1. Problem statement

In this section our aim is to refine the depth of the initial
coarse reconstruction estimate of each dynamic object. We
aim to assign an accurate depth value to each pixel p from
a set of depth values D =

{
d1, ..., d|D|−1,U

}
. Each di is

obtained by sampling the optical ray from the camera and
U is an unknown depth value to handle occlusions and to
refine object segmentation. We assume that the depth of
a particular pixel lies within the given threshold around the
initial estimate as depicted in Figure 4 and varies depending
upon the regions RI or RO. Hence we divide our depth
labels in two sets, one for the region RI (DI ) and other for
RO (DO) such that |DI | < |DO|.

5.2. Proposed approach
We formulate the computation of depth at each point as

energy minimization of the cost function defined in Eq. (1).
This equation is specifically designed to refine the recon-
struction and segmentation and is used to estimate a view-
dependent depth map for each dynamic object with respect
to each camera.
E(d) = λdataEdata(d) + λcontrastEcontrast(d)+

λsmoothEsmooth(d) (1)

where, d is the depth at each pixel for our dynamic object
for the region RI + RO and can be assigned U to refine ob-
ject segmentation. The equation consist of three terms: the
data term is for the photo-consistency scores, the smooth-
ness term is to avoid sudden peaks in depth and maintain
the consistency and the contrast term is to identify the ob-
ject boundaries. Data and smoothness terms are common to
solve reconstruction problems [2] and the contrast term is
used for segmentation [16].



5.2.1 Matching term
To measure photo-consistency, we use a data term measure
based on NCC recently proposed in [11]. They suggests this
to be the best photo-consistency measure for wide baseline
multi-view datasets because of its ability to obtain a high
number of correct matches and preserve boundaries.
Edata(d) =

∑
p∈P edata(p, dp) ={

M(p, q) =
∑
i∈Ck

m(p, q), if dp 6= U

MU , if dp = U
(2)

where P is the 4-connected neighbourhood of pixel p,
MU is the fixed cost of labelling a pixel unknown and
q = Π(p, dp) denotes the projection of the hypothesised
point P in an auxiliary camera where P is the coordinates
of 3D point along the optical ray passing through pixel p lo-
cated at a distance dp from the reference camera. Ck is the
set of k most photo-consistent pairs with reference camera.
For textured scenes NCC over a squared window is a com-
mon choice [28]. The NCC values range from -1 to 1 which
are then mapped to non-negative values by using the func-
tion 1−NCC. A maximum likelihood measure[22] is used
in this function for confidence value calculation between the
center pixel p and the other pixels q and is based on the sur-
vey on confidence measures for stereo [11]. The measure is
defined as:

m(p, q) =
exp cmin

2σ2
i∑

(p,q)∈N exp−(1−NCC(p,q))
2σ2

i

(3)

where σ2
i is the noise variance for each auxiliary camera

i; this parameter was fixed to 0.3. N denotes the set of
interacting pixels in P . cmin is the minimum cost for a
pixel obtained by evaluating the function (1 − NCC(., .))
on a 15× 15 window.

5.2.2 Contrast term
Segmentation boundaries in images tend to align with con-
tours of high contrast and it is desirable to represent this as
a constraint in stereo matching. A consistent interpretation
of segmentation-prior and contrast-likelihood is used from
[16]. We used a modified version of this interpretation in
our formulation to preserve the edges by using Bilateral fil-
tering [33] instead of Gaussian filtering.

Econtrast =
∑

p,q∈N

econtrast(p, q) (4)

econtrast(p, q) =


0, if (dp = dq = U ) or

(dp = dq 6= U )
1

1+ε (ε+ exp−C(p,q)), otherwise
(5)

‖·‖ is the L2 norm and ε = 1. The simplest choice
for C(p, q) would be the squared Euclidean color dis-
tance between intensities at pixel p and q as used in [10].
We propose a term for better segmentation as C(p, q) =
‖B(p)−B(q)‖2

2σ2
pqd

2
pq

where B(.) represents the bilateral filter, dpq

is the Euclidean distance between p and q, and σpq =〈
‖B(p)−B(p)‖2

d2pq

〉
This term enables to remove the regions

with low photo-consistency scores and weak edges and
thereby helps in estimating the object boundaries.

5.2.3 Smoothness term
This term is inspired by [10] and it ensures the depth labels
vary smoothly within the object reducing noise and peaks
in the reconstructed surface. This is useful when the photo-
consistency score is low and insufficient to assign depth to
a pixel.

Esmooth(d) =
∑

(p,q)∈N

esmooth(dp, dq) (6)

esmooth(dp, dq) =


min(|dp − dq| , dmax), if dp, dq 6= U

0, if dp, dq = U

dmax, otherwise
(7)

dmax is set to 50 times the size of the depth sampling step
defined in Section 5.1 for all datasets.

5.3. Optimization of Reconstruction and Segmen-
tation

The energy minimization for Eq. (1) is performed by us-
ing the α-expansion move algorithm from [4]. We choose
graph cuts because of its strong optimality properties over
belief propagation [32]. Graph-cut using the min-cut/max-
flow algorithm is used to obtain a local optimum [3]. The α-
expansion for a pixel p is performed by iterating through the
set of depth labels DI , if p ∈ RI and DO, if p ∈ RO. Con-
vergence is achieved after 4 or 5 iterations. A final model is
obtained by merging the view-dependent depth representa-
tions through the Poisson surface reconstruction algorithm
as explained in Section 3.

6. Results and Evaluation
Evaluation is performed from publicly available re-

search datasets: Indoor and Outdoor dataset with
simple background (Dance2 and Cathedral), Indoor
datasets with cluttered background (Odzemok and Dance1)
(cvssp.org/cvssp3d) and Indoor and Outdoor datasets cap-
tured with moving handheld cameras (Magician and Jug-
gler) [1]. The detailed characteristics of these datasets and
the parameter settings for Eq.(1) are summarised in Table
1. The framework explained in Section 3 is applied to
all datasets, starting from sparse reconstruction followed
by clustering and initial coarse reconstruction of dynamic
objects which is then optimized using the proposed joint
segmentation and reconstruction approach. Most existing
methods do not perform simultaneous segmentation and re-
construction, therefore the method is compared to two state
of the art approaches Furukawa and Ponce [8] for wide-
baseline reconstruction and Guillemaut and Hilton [10] for
joint reconstruction and segmentation. Both of these ap-
proaches are top performers on the Middlebury for multi-
view reconstruction of wide-baseline views [28].



Figure 5. Results for a pair of images from each dataset: 2nd − 4th column: Segmentation (Red represents true negatives and green
represents false positives compared to the ground truth) and 5th − 6th column: Depth

6.1. Segmentation results
The segmentation results from the proposed approach

are compared against the segmentation from Guillemaut
and Hilton [10] and the ground-truth. Ground truth is ob-
tained by manually labelling the foreground for all datasets
except Juggler and Magician where ground-truth is avail-
able online.
Guillemaut [10]: This approach requires an initial coarse
foreground segmentation retrieved by differencing against a
static background plate to obtain a visual hull required as

a prior for reconstruction. In the proposed approach we do
not assume a known background allowing the use of mov-
ing cameras. We modified the Guillemaut method by as-
signing the coefficient of the color term to be zero because
we assume no prior knowledge of the background and we
initialized this approach using our initial coarse reconstruc-
tion instead of the visual hull.

6.1.1 Qualitative results
The segmentation results for two frames from each dataset
are shown in Figure 5. Guillemaut requires accurate vi-



Dataset Number of Cameras Number of frames Image resolution Baseline λdata λsmooth λcontrast
Dance1 8 (1 moving) 250 1920× 1080 15 degrees 0.5 0.005 1.0

Magician 6 (all moving) 6900 960× 544 40-55 degrees 0.6 0.01 3.0
Dance2 8 (all static) 125 1920× 1080 45 degrees 0.5 0.005 1.0

Odzemok 8 (2 moving) 250 1920× 1080 15 degrees 0.5 0.005 1.0
Cathedral 8 (all static) 143 1920× 1080 45 degrees 0.6 0.01 5.0
Juggler 6 (all moving) 3500 960× 544 25-35 degrees 0.6 0.01 5.0

Table 1. Characteristics and parameter settings for datasets
sual hull initialization, in this case the proposed coarse re-
construction is erroneous and far-away from the actual ob-
ject boundaries as shown in Figure 3. This results in less
accurate segmentation compared to the proposed approach
which disambiguates the problem by improving the contrast
and data terms in the energy formulation. The data term
removes the regions with very low photo-consistency and
the contrast term introduces affinity towards strong edges of
foreground. The artefacts with respect to ground truth in the
proposed approach are from shadow areas and occlusions.

6.1.2 Quantitative evaluation
To perform the quantitative evaluation of the segmentation
we measured theHitRatio,BkgRatio andOverlapRatio
as defined in [29] against the ground truth pixels. The three
criterion are defined as follows:
HitRatio = |Result

⋂
GT | / |GT |

BkgRatio = |Result−GT | / |Result|
OverlapRatio =

∣∣∣Result⋂GT
∣∣∣ / ∣∣∣Result⋃GT

∣∣∣ (8)

The results are shown in Table 2 for all the dataset. The
comparison parameters are averaged over the entire se-
quence to ensure the accuracy of the result. Higher hit,
overlap ratio and lower background ratio represents better
segmentation. The HitRatio is the ratio of true positive in
the result with the ground truth. The OverlapRatio is the
ratio of true positives in the result with the sum of result
and ground truth. The ratios for the proposed approach are
higher than Guillemaut for all the datasets, generally much
higher for more complex datasets like outdoor scenes or
scenes captured with only handheld moving cameras. This
demonstrates the robustness of the proposed approach to
general dynamic scene segmentation compared to Guille-
maut as seen in Figure 5. The BkgRatio measures the
proportion of result which actually belongs to background
i.e. false positives in the segmentation. In case of Guille-
maut this value is higher as compared to the proposed ap-
proach for most of the datasets. To conclude the segmenta-
tion obtained by the proposed approach vs. a state-of-the-art
technique which assumes static cameras and a known back-
ground plate is better in quality with higher hit, overlap ratio
and lower background ratio.
6.2. Reconstruction results

We have compared our results with Guillemaut (Section
6.1) and Furukawa [8]: This represents a state-of-the-art
multi-view wide-baseline stereo approach. Furukawa [8]

does not refine the segmentation but gives a 3D point cloud
which is converted into a mesh using Poisson surface re-
construction. For fair comparisons all of the approaches are
initialised with the same calibration and coarse reconstruc-
tion obtained using the method explained in Section 4.

6.2.1 Qualitative results
The depth maps for the proposed approach and Guillemaut
are shown in Figure 5. The consistency of depth maps in

Figure 6. Results for each dataset: 1st − 4th column: Meshes and
5th − 6th column: Difference meshes against proposed approach
with color coded error in cms and 7th is textured mesh.



Criteria Dance1 Magician Dance2 Odzemok Cathedral Juggler
Ours Guill. Ours Guill. Ours Guill. Ours Guill. Ours Guill. Ours Guill.

HitRatio 0.995 0.993 0.887 0.663 0.994 0.992 0.899 0.895 0.891 0.796 0.879 0.646
BkgRatio 0.023 0.042 0.022 0.018 0.020 0.031 0.381 0.507 0.021 0.015 0.025 0.038
Overlap 0.947 0.928 0.855 0.595 0.963 0.941 0.611 0.469 0.849 0.745 0.841 0.577

Table 2. Segmentation performance comparison for all datasets (best for each dataset is highlighted in bold) (Guill. depicts Guillemaut)

the case of the proposed approach are better because of the
use of an improved data term for robustly matching between
views and preserving edges.
The 3D models of the dynamic foreground obtained from
the proposed approach are compared with Guillemaut and
Furukawa in Figure 6 for all the datasets. For Magician
dataset Furukawa gives very few points on a small part of
the object in the reconstruction due to the complexity of the
dataset. Results are compared closely with Guillemaut in
Figure 7. In Figure 6 the meshes obtained by Furukawa do
not have clear boundaries because it is not designed to re-
fine the segmentation of the object. The meshes obtained
from the proposed approach are visibly more accurate com-
pared to the other techniques especially in the case of out-
door datasets. Some errors in the mesh reconstruction are
present due to camera noise, uniform textures and similarity
to the background. Results for Juggler sequence are shown
in Figure 8 and more results are available in supplementary
material and video.

6.2.2 Quantitative evaluation

Due to the absence of ground-truth 3D models for the
datasets the accuracy evaluation is limited to the qualitative
analysis. In this section we compare the computational effi-
ciency of different approaches against the proposed method.
The run-time per frame is shown in Table 3. The speed
of the proposed approach is slightly lower than Furukawa
(which does not perform segmentation) and the improve-
ment in the speed for the proposed approach is approxi-
mately 25% as compared to Guillemaut.

Figure 7. Result for magician dataset

Figure 8. Result for Juggler sequence: Original images from one
view with frame numbers and mesh reconstructions alternatively

Dataset Furukawa[8] Guillemaut[10] Proposed
Dance1 326 s 448 s 295 s

Magician 311 s 452 s 377 s
Dance2 502 s 655 s 471 s

Odzemok 381 s 498 s 364 s
Cathedral 525 s 679 s 501 s
Juggler 399 s 466 s 374 s

Table 3. Comparison of computational efficiency for all datasets
(time in seconds (s))

6.3. Limitations and Future work
The proposed approach reconstructs and segments mul-

tiple close objects as a single dynamic object. This is not
a failure case, but it increases the overall computational
time of general scene reconstruction. Secondly, the pro-
posed technique does not handle textureless scenes due to
the sparcity of 3D points and crowded scenes due to the fail-
ure of the clustering algorithm used for initialisation. We
aim to handle these scenes in future, by inclusion of full
scene reconstruction from the sequence.

7. Conclusion
This paper introduced a novel technique to automatically

segment and reconstruct dynamic objects captured from
multiple moving cameras in general dynamic uncontrolled
environments without any prior on background appearance
or structure. The proposed automatic initialization was used
to identify and initialize the segment and reconstruction of
multiple dynamic objects. The initial coarse approxima-
tion is refined using a a joint view-dependent optimisation
of segmentation and reconstruction by a view-dependent
graph-cut optimization using the photo-consistency and
contrast cues from wide-baseline images.

Unlike previous method the proposed approach allows
unsupervised reconstruction without prior information
on scene appearance or structure. The segmentation and
reconstruction accuracy are significantly improved over
previous methods allows application to more general
dynamic scenes. Tests on challenging datasets demonstrate
improvements in quality of reconstruction and segmenta-
tion compared to state-of-the-art methods.
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