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Abstract

Reconstruction approaches based on monocular defocus
analysis such as Depth from Defocus (DFD) often utilise the
thin lens camera model. Despite this widespread adoption,
there are inherent limitations associated with it. Coupled
with invalid parameterisation commonplace in literature,
the overly-simplified image formation it describes leads to
inaccurate defocus modelling; especially in macro-scale
scenes. As a result, DFD reconstructions based around
this model are not geometrically consistent, and are typi-
cally restricted to single-view applications. Subsequently,
the handful of existing approaches which attempt to include
additional viewpoints have had only limited success.

In this work, we address these issues by instead utilising
a thick lens camera model, and propose a novel calibra-
tion procedure to accurately parameterise it. The effective-
ness of our model and calibration is demonstrated with a
novel DFD reconstruction framework. We achieve highly
detailed, geometrically accurate and complete 3D models
of real-world scenes from multi-view focal stacks. To our
knowledge, this is the first time DFD has been successfully
applied to complete scene modelling in this way.

1. Introduction
When reconstructing a scene from RGB images, it is

commonplace to simplify the image formation process by
making assumptions about the camera. For example, multi-
view stereo (MVS) typically assumes a pinhole model
[15], while focus-based approaches usually adopt a thin
lens model. Although these models provide a mathemati-
cally convenient and often reasonable approximation, nei-
ther fully describe the behaviour of a modern lens.

Due to the ubiquious reliance on these simplified models,
many reconstruction algorithms are implicitly restricted by
the inaccuracies they introduce. In the context of DFD, the
use of the thin lens model severely limits the accuracy of
reconstruction in several ways.

First, although large focal stacks are benefical to recon-

Figure 1. We propose a DFD pipeline that incorporates a thick
lens camera model, which we parameterise using a novel calibra-
tion procedure. Multi-view focal stacks of macro-scale scenes are
reconstructed using our iterative DFD framework, and combined
to produce complete 3D models. To our knowledge, this is the first
time DFD has been applied in this way.

struction, most approaches do not consider focal stacks with
more than two images. One reason is the depth ambigui-
ties introduced by the thin lens model, which is exacerbated
with the addition of more images. Other reasons include a
lack of publically available datasets, as well as the absence
of a standard approach for readily acquiring focal stacks.

Second, traditional DFD is generally limited to coarse,
single-view reconstructions. Given the erroneous defocus
modelling, depth resolution cannot be easily increased with-
out heavy reliance on scene priors. As a result, general
DFD approaches tend to produce low fidelity depth maps.
Extending to multiple views is difficult because of the low
quality, geometrically inconsistent reconstructions; as well
as the inherent limitations of the thin lens model which we
will discuss later.

While some works pursue approaches that iteratively ad-
just the defocus functions during the reconstruction to par-
tially overcome these limitations [21, 8, 22, 23], we instead
consider a different camera model to address these prob-
lems at their source. In this work, we adopt a thick lens
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model and apply it to multi-view DFD reconstruction (see
Figure 1). To our knowledge, this has not been attempted
previously due to the complexities this introduces during ac-
quisition. However, the adoption of this model solves many
of the discussed issues.

We present a novel and practical method for fully cali-
brating a camera as a thick lens that is applicable to the cap-
ture of multi-view focal stacks. Then, we apply our model
to a novel DFD reconstruction framework, which allows us
to demonstrate the improvements in scene modelling our
approach has over traditional methods. In summary, this
work makes the following key contributions:

1. An image formation model that better describes the ap-
pearance of images captured with a finite aperture

2. A practical thick lens calibration procedure for multi-
view focal stacks

3. An MRF-based DFD reconstruction framework that
produces high quality 3D reconstructions of macro-
scale scenes

Our work is particuarly useful when applied to macro-
scale scenes, since the limited depth of field (DoF) makes
other approaches such as MVS unsuitable. Additionally, the
monocular nature of DFD makes the reconstruction of com-
plex materials that are traditionally challenging for MVS
possible. Finally, few viewpoints are needed for complete
scene coverage compared to conventional approaches.

2. Previous Work
Single-View DFD DFD is a well established field for
single-view reconstruction. While some works achieve
depth estimation from a single defocused image [43, 33],
this is formally ill-posed. Instead, most existing literature
use two or more defocused images taken from a single view-
point and compare the relative blur between them [14]; sim-
plifying the problem by not considering radiance when re-
covering shape [3, 22].

One approach for capturing these images is to vary the
aperture setting [29, 25, 36]. Due to ambiguities in depth
estimation, this constrains the scene to either in front of or
behind the focused plane [24] - limiting the reconstruction
volume. Alternatively, the camera can be refocused through
the scene. While this approach has fewer constraints, it
has the disadvantage of introducing scale and translational
differences between images when captured with a conven-
tional lens. Previous works have corrected for this com-
putationally [38, 2] or optically [41]. However, the former
approaches have reliance on scene content and DoF for ac-
curate registration, while the latter requires modifying the
camera. Some works instead use lightfield cameras to refo-
cus the scene [39, 9, 40] at the expense of spatial resolution.

Regularisation is often introduced in textureless regions
by formulating the problem as an energy function. This
is typically implemented numerically [14, 3, 11, 22], or
in an MRF framework [26, 30]. While numerical ap-
proaches have higher resolution reconstructions, they tend
to lack the stability of MRF-based approaches. More re-
cent works have started to explore the use of deep learning
[36, 9, 7, 17], although this is still an emerging area of re-
search.

Multi-View DFD While the majority of literature focuses
on single-view reconstruction, some works have investi-
gated the use of defocus cues with multiple viewpoints.
These works combine DFD with correspondence informa-
tion to improve stereo matching. As such, most do not use
more than 2 views. [31] formulate DFD as disparity and ap-
ply stereo constraints. [21] estimate camera parameters and
combine cues in a iterative framework. [8] formulate rela-
tive blur as a function of disparity and estimate the blurring
function. [4] derive an expression to calculate relative blur
between arbitrary viewpoints. [39] utilise a lightfield cam-
era and combine correspondence and defocus information
in an MRF framework.

Summary Very few approaches consider camera models
other than the thin lens model. This includes most deep
learning-based approaches, which typically adopt a thin
lens when generating training data. Although [16] propose
a data-driven camera model, they note an implicit depen-
dence on the thin lens model. Methods which consider addi-
tional viewpoints either iteratively approximate camera pa-
rameters, or rely on insufficent calibration. Moreover, most
do not consider more than 2 views. In contrast, we pro-
pose the use of a generalised camera model and calibration
procedure that enables complete scene modelling from an
arbitary number of multi-view focal stacks. Our approach
is intended to be as generalised as possible, and as such
does not require any modification of the camera or special-
ist equipment.

3. Camera Model
The basis of our model relies on the combination of pro-

jective geometry and finite-aperture camera models. In this
section, we explain how this is applied to the formation of
a focal stack from an arbitary viewpoint of the scene. From
here onwards, we refer to parameters related to the ith focus
setting of this focal stack with a subscript. Without loss of
generality, let us define a reference setting at i = 0.

For an ideal pinhole camera, the projection of a world-
space coordinate X to an image-space coordinate xi can be
defined by the perspective transform [15]:

xi = KiEX, (1)



where Ki and E are the camera intrinsic and extrinsic ma-
trices respectively. For simplicity we assume images are not
subject to lens distortion, but in reality we account for this
during calibration. We define Ki as

Ki =

siFi 0 x0 + t̄ix
0 siFi y0 + t̄iy
0 0 1

 (2)

where x0 and y0 are the principal point, and Fi is the ef-
fective focal length. si and t̄i account for the scale and
translation differences relative to the reference setting, in-
troduced by refocusing the camera. Let the radiance of xi
be defined by the function r(xi). Defocus introduced to im-
age Ii in the focal stack from the finite aperture is modelled
by integrating the scene radiance over the shift-variant point
spread function (PSF) of the camera k [14, 10, 13]:

Ii(y) =

∫
k(y,xi) r(xi) dx, (3)

where Ii(y) defines the colour of pixel y. Such a forma-
tion model only considers the behaviour of light acting as a
particle, ignoring diffraction blur and chromatic aberration.
However, given a large enough aperture and sufficently high
quality lens, such effects can be considered negligble.

As in many works, we simplify Equation 3 to a convo-
lution by assuming the scene is composed of fronto-parallel
surfaces. Although this assumption becomes invalid at dis-
continuities [34] and more accurate models exist [35, 1, 12],
we found the error introduced is insignificant for small blur
radii. Thus, Equation 3 becomes [14, 10]

Ii(y) =

∫
kσ(y − xi) r(xi) dx = (kσ ∗ r)(y). (4)

In many previous works, kσ is frequently approximated by
either a Pillbox function [41, 11], resembling a circular PSF
with hard edges; or a Gaussian function [14, 2], which ap-
proximates a multi-wavelength PSF [29, 4] as well as some
diffraction effects [24, 11, 20]. In this work, we define kσ
as the latter

kσ(y) =
1

2πσ2
e−

1
2 (y

σ )
2

. (5)

To complete our camera model, we now need to define the
blur radius σ. This is where our approach diverges signif-
icantly from other works. Typically, a thin lens model de-
fines σ as a function of depth d [10]

σ(d) =
γaivi

2

(
1

d
+

1

vi
− 1

fi

)
, (6)

where fi is focal length, ai is the aperture radius, vi is the
image distance and γ is a constant. Note that, unlike most
works, we do not consider focal length and aperture size to
be constant across all settings.

Figure 2. Our camera model is a thick lens composed of two thin
lenses with focal length fi separated by some distance. The effec-
tive pinhole location is at the entrance pupil u1i. Calculation of
the defocus radius σ for a given pixel is performed relative to the
principal planes h1i and h2i.

By definition, Equation 6 implicitly assumes the prin-
cipal plane (i.e. the thin lens) where light is modelled as
refracting is aligned with the effective camera pinhole. We
have observed this is not normally the case in reality, espe-
cially with macro lenses. This highlights a significant lim-
itation with the standard thin lens assumption, particularly
when using multiple viewpoints.

Instead, we adopt a thick lens model as seen in Figure 2
which accounts for this displacement. Our model is com-
posed of two principal planes h1i and h2i. The amount of
light entering or leaving each lens is controlled by the di-
ameters of the entrance u1i and exit u2i pupils respectively.
These are virtual images of the physical aperture as viewed
from the front and the back of the lens. The effective pin-
hole is located at u1i. Given the pupil ratio pi [32]

pi =
u2i
u1i

, (7)

we define the displacement of the reference setting w [32]

w = f0

(
1

p0
− 1

)
. (8)

Note as p→ 1, our model converges to a thin lens. Equa-
tion 6 is modified to become

σ(d) =
γaivi

2

(
1

d− w
+

1

vi
− 1

fi

)
. (9)

4. Calibration
The calibration of our camera model introduced in Sec-

tion 3 is non-trivial for several reasons. First, unlike most
approaches, we do not consider relevant camera parameters
provided by the manufacturer to be accurate for all focus
settings. This is because these values are only valid when
the camera is focused at infinity. Secondly, to our knowl-
edge there is no standard approach for reliably calculating
the pupil ratio, whose value is of significant importance
in our model. Finally, our calibration needs to correct for



Figure 3. Calibration images of a uniform plane used for deriving
average brightness focused at infinity (left) and at a focus setting
(right). The observed change in brightness is purely a result of
refocusing the camera. Images are white balanced and brightened
for visualisation.

translation and scale differences between multi-focus im-
ages without dependance on DoF or texture content.

In this section, we will discuss how we solved these
problems. We begin by defining a number of focus settings
that sweep through the scene volume. In general, the more
focus settings captured, the better our model can be applied
to DFD reconstruction. Our calibration approach can then
be broken down into several stages. For each setting, the
following key steps are made:

1. Calculate camera intrinsics and lens distortion

2. Derive affine transforms to register images

3. Estimate the defocus parameters in our model

4. Refine parameters in a per-viewpoint optimisation

4.1. Camera Matrices

In this first step, we derive the intrinsic calibration of
the camera using a standard approach proposed in [42]. A
calibration plane is positioned in multiple orientations and
captured at each focus setting. Images are taken with both a
small and a large aperture. For each setting, feature points
are identified from the smaller aperture images. The intrin-
sic matrix Ki and lens distortion coefficents are solved by
minimising the reprojection error. In the following sections,
images have lens distortion removed. E is calculated in a
similar way for each viewpoint, using a set of scene features
common to all views.

4.2. Registration

This step aims to register all images in a focal stack to a
reference setting. A naive approach may be to directly use
the parameters from the geometric calibration. Since Fi is
related to the projection magnification mi by [32]

Fi = fi

(
1 +

mi

pi

)
, (10)

the scaling between two settings could be found quite easily
if pi = 1 and fi = f ∀ i. However, in our model neither of

these conditions are guaranteed. In addition, while transla-
tion differences could be derived from the principal point in
theory, in practise the estimation of this quantity is ill-posed
and subject to unpredictable variations.

Instead, we exploit the detected features c from Section
4.1. By identifying corresponding features in the images,
an optimal scale and translation can be calculated to best
align them. The ratio of effective focal lengths between the
reference F0 and Fi is used as an initial scaling factor si.
This is refined in a least mean square optimisation:

min
si

∑
k

|| tki − t̄i ||2 (11)

tki = ck0 − sicki (12)

where c0 and ci are the feature coordinates, and t̄i is the
mean of tki ∀ k. Equation 11 is solved as a function of si
using gradient descent. Once si has been optimised, the cor-
responding t̄i represents the required 2D translation. After
registration, all images in the focal stack share the camera
matrices of the reference setting.

4.3. Parameter Estimation

In this section, we discuss how the parameters in Equa-
tion 9 fi, ai, vi and w are estimated. We begin by calculat-
ing two intermediate variables mi and pi.

Pupil Ratio We capture images of a uniform plane fo-
cused at infinity (where p∞ = 1), and at each of the de-
fined focus settings (where pi is unknown) as seen in Figure
3. From this, we find an expression relating the observed
change in brightness as a result of refocusing to pi. Here,
we show the derivation of pi when u2 < u1.

The amount of light incident to the image plane of the
camera is related to the area of the smallest pupil (in this
case u2), with the global illumination and exposure time
being the constants of proportionality. If they remain fixed,
then the following must hold true:

b∞
bi

=

(
u1∞
u1i pi

)2

. (13)

Here, b∞ and u1∞ are the average brightness and entrance
pupil diameter focused at infinity; and bi and u1i are the
average brightness and entrance pupil diameter at a given
focus setting. Note that u1∞ = u2∞ and u1i pi = u2i.
Equation 13 can be rewritten as:

b∞
bi

=

(
f∞Ni
FiN∞pi

)2

. (14)

Here, f∞ is the known focal length when focused at infin-
ity, N∞ is the reported f-stop of the aperture and Ni is the



effective f-stop setting. Given that [32]

Ni = N∞

(
1 +

mi

pi

)
, (15)

Equation 14 can be rearranged as a quadratic function of pi
by substituting Equation 15:

Fi
f∞

√
b∞
bi
p2i − pi −mi = 0. (16)

The value of pi when u2 < u1 is given by the positive solu-
tion of Equation 16. Note here that pi < 1:

pi =
f∞

2Fi

√
b∞
bi

1 +

√
1 +

4Fimi

f∞

√
b∞
bi

 . (17)

A similar derivation can be made for u2 > u1. Conversely,
in this case pi > 1:

pi =
mi

Fi
f∞

√
b∞
bi
− 1

. (18)

The choice of either Equation 17 or 18 when calculating pi
is simply a case of whichever one gives a valid solution.
The only unknown here is mi, which we derive next.

Magnification The magnification mi of a focus setting is
found by first finding the focusing distance di. This is the
distance from the camera pinhole to the centre of the DoF.
mi and di are related as follows [18]

mi =
Fi
di
. (19)

To calculate di, we apply the Sum Modified Laplacian
(SML) [27] focus measure to the large aperture calibration
pattern images captured in Section 4.1. Since the poses
of the patterns are known, feature points on the calibration
plane can be sampled and the distance to the camera found.
Regions where a high response is measured indicates an
area in-focus. Assuming the DoF is a parallel plane, sam-
ples from multiple calibration images can be collected to
improve robustness. The weighted mean of the distribution
above a threshold gives the value of di as illustrated in Fig-
ure 4, from which mi is found.

Focal Length Given mi, pi and Fi, the value of fi is
given by rearranging Equation 10 as

fi =
Fi(

1 + mi
pi

) . (20)

Aperture The aperture radius ai is given by [18]

ai =
Fi

2Ni
. (21)

Figure 4. Left: Finite-aperture calibration plane image with known
pose (top) and SML focus response with perspective distortion re-
moved (bottom). Sample points are indicated by white circles.
Right: distribution of focus samples accumulated from all cali-
bration images used to calculate magnification. Weighted mean
indicated by dashed line.

Image Distance Usually, vi is defined by [18]

vi = fi(1 +mi). (22)

While this is correct for a single image, this does not hold in
the context of a focal stack. This is because, as the camera
is refocused, the principal planes do not remain in a fixed
position. Thus, for DFD observations to be relative to the
same point (the reference focus setting at i = 0), this drift
needs to be accounted for when calculating vi

vi = fi(1 +mi)− (f0 − fi) = fi(2 +mi)− f0. (23)

Equation 23 offsets Equation 22 by the difference in focal
length relative to f0. This is illustrated in Figure 5 using a
thin lens for simplicity. Essentially, this adjustment ensures
the principal planes of each setting align with one another.

Pinhole Offset Finally, we can now define the value of w
according to Equation 8.

4.4. Parameter Refinement

An important practical consideration during acquisition
is to capture multiple focal stacks with the same settings. So
far, we have assumed the ideal case where the camera refo-
cuses perfectly. However, throughout the calibration pro-
cess the lens will not be returning to exactly the same focus
setting. As a result, there may be a need to refine some pa-
rameters on a per-viewpoint basis, depending on the quality
of the lens. In our experience, only the value of w needs
adjusting in this way. All other parameters (including reg-
istration) are deemed sufficently accurate.

We optimise w using scene features with known position
in the world reference frame. Our cost function is based on
the relative blur between pairs of images in the focal stack.
The cost function presented here is similar to the one used
in Section 5 for reconstruction. First, we define the relative
blur between settings i and j:

σij(d) =
√
|σi(d)2 − σj(d)2| (24)



Figure 5. Thin lens illustration demonstrating how refocusing
through the scene offsets the principal plane. Relative to the refer-
ence setting (top), the effective position of the lens for some other
setting focused further away (bottom) is displaced by the differ-
ence in focal lengths. Note this is not related to w.

where σ(d) is defined in Equation 9. Using this, we opti-
mise w using images Ia and Ib from the focal stack.

min
w

∑
{ij}∈Ω

∑
k

||σij(dk) ◦ Ia − Ib ||2 (25)

{a, b} =

{
{i, j} σi(d) < σj(d)

{j, i} otherwise
(26)

Here, Ω is a vector of paired image indices, ◦ is a defo-
cus operator which we define later, and dk is the distance
of the kth feature from the camera. Equation 25 blurs
whichever image is sharpest to match the other for every
feature, and compares the result with a pixel-wise square
difference. This sparse optimisation can be thought of as
a per-viewpoint global adjustment of all blurring functions
describing the focal stack.

5. Reconstruction
Our reconstruction framework is defined as a view-

dependent, MRF-based discrete labelling problem. Each
pixel in a given image represents the appearance of a scene
surface, which we model as a tangent plane. Thus, to recon-
struct the scene, we solve the inverse problem of finding the
world-space position and orientation of every surface using
the defocus information leveraged from our camera model.

We propose an iterative framework which overcomes
the limited depth resolution inherent to MRF-based imple-
mentations. For a given viewpoint, let us define a vol-
ume unique to each pixel within which the correspond-
ing surface is located. These volume boundaries could be
given, for example, by a visual hull initialisation. Then,
we uniformly divide these volumes into N candidate labels
x = {x1, x2, ... xN}; where each label corresponds to a
unique distance from the camera. For every pixel, we de-
rive costs ΦD associated with the likelihood of label assign-
ment from the observed defocus across the focal stack. The

optimal labelling is then found from the energy function

E(x, n) =
∑
p∈ν

ΦD(xp) +
λ

n

∑
{p,q}∈ε

Ψpq(xp, xq). (27)

In untextured or ambiguous regions, Ψpq encourages a la-
belling consistent with neighbouring surfaces according to
the value of λ; whose effect reduces with iteration n to en-
courage higher fidelity. We define one iteration in this con-
text as a complete optimisation of Equation 27 for all labels
using α-expansion [37, 6, 19, 5].

After each iteration, our novel approach reduces the re-
construction volume asscociated with every pixel by half
around the current labelling. Since the number of candi-
ate labels N remains the same, the resolution of the frame-
work doubles with every iteration. This can be considered a
globally optimal prunning of unnecessary labels, and signif-
cantly reduces memory usage and computational cost while
simultaneously offering limitless depth resolution. Surface
normals are updated from the labelling gradient and used by
Ψpq in the next iteration.

Once the target resolution is reached, a point cloud is
generated from the depth and normal maps, and combined
with point clouds from other views. Minimal filtering and
downsampling of the point cloud is performed, before a sur-
face mesh is generated using standard Poisson surface re-
construction. The remainder of this section will discuss the
terms in Equation 27 in more detail.

5.1. Defocus Term

To calculate the defocus term for a pair of images {Ii,
Ij} in a given focal stack, a scale-space approach is taken.
The relative blur between the images is found according to
Equation 24, and the sharper image is blurred to match the
other. The cost function φD(xp) is defined by the square
difference between the defocused and original image

φD(xp) =
∑
{ij}∈Ω

∑
k

(
σij(d

k) ◦ Ia − Ib
)2
. (28)

As in Equation 25, ◦ denotes the defocus operator, Ω con-
tains indices of paired images, and {a, b} are defined in
Equation 26. Since the accuracy of DFD is greatest when
relative blur is small, only neighbouring images in the stack
are paired together. When evaluating Equation 28, we first
remove harmonic texture components in the source images

Ii = Ii − (Ii ◦ kσ). (29)

Figure 6. Example images from the presented datasets.



Figure 7. Example single view reconstructions of our datasets. The depth maps (top row) and corresponding point clouds (bottom row) are
recovered using the thin lens model (left) and our thick lens model (right).

This procedure, proposed in [10], removes defocus-
invariant texture components, and has been shown to im-
prove the performance of DFD. We define our defocus op-
erator ◦ as a linear diffusion operator as proposed in [14]

Ii ◦ σ = Ii + cσ
(
∇2 ∗ Ii

)
, (30)

where ∇2 denotes the Laplacian operator, and cσ is termed
the diffusion coefficent

cσ =
σ2

2t
. (31)

Here, we set diffusion time t = 0.5 as suggested by [14].
Although ◦ is equivalent to a convolution with kσ , we found
linear diffusion performs better with subpixel defocus radii.
The forward diffusion constraint is enforced by starting
Equation 28 at the label closest to the depth d0 where the
relative blur σij(d0) = 0. We derive this from Equation 24:

d0 =
aivi ± ajvj

ai
fi

(vi − fi) ± aj
fj

(vj − fj)
+ w (32)

The above simplifies to the result in [14] when fi = fj ,
ai = aj and w = 0. Finally, the generated costs are nor-
malised by the following, where µD is the mean of the un-
normalised cost volume.

ΦD(xp) = 1− e−
φD(xp)

µD (33)

5.2. Smoothness Term

Since the defocus term has a reliance on scene texture for
accurate depth estimates, regularisation is necessary to en-
sure consistently smooth reconstructions in textureless re-
gions. We define this by the function V , which we truncate
to preserve discontinuities:

Ψpq(xp, xq) = min (Ψmax, Vpq(xp, xq)) (34)

In our implementation, smoothness costs are calculated ac-
cording to pairwise interactions over a 4-connected clique.

As proposed by [28], we implement V as a second-order
smoothness prior, by exploiting the surface model previ-
ously described. This encourages a piecewise linear recon-
struction, rather than a fronto-parallel one. In combiniation
with our data term and iterative label pruning, this makes
for a very powerful framework for general scenes.

6. Evaluation

We now present an evaluation of our implementation,
and compare the thick lens model to the traditional thin lens
model. For the sake of fairness, both models are evaluated
using the same DFD framework introduced in Section 5.
We are unable to directly compare to other DFD formula-
tions, since source code is not available from recent works
that would produce meaningful comparisons. Additionally,
public DFD datasets lack our thick lens calibration.

We therefore present 3 real-world multi-view datasets in
this paper: Owl (29 views, 5 settings), Skull (16 views,
7 settings) and Quartz (7 views, 7 settings); see Figure 6.
Each dataset was taken with a Canon EOS 5D camera using
a 100mm macro lens. Ground truth geometry is unavailable
as a result of their scale and surface complexity.

Table 1 shows some example parameters derived for
each model. We precisely calibrate the thin lens using the
intrinsic calibration from Section 4.1 to find vi and di, as
defined by the model. However, applying the thin lens as-
sumptions to Equations 20 and 21 gives erroneous results,
so we follow previous works in setting fi and ai to the val-
ues reported by the camera. Unlike our model, the thin lens
reconstructions cannot utilise a visual hull initialisation.

Model f (mm) a (mm) v (mm) w (mm)

Thin 100.00 8.93 168.23 0.00
Thick 98.13 8.76 143.43 53.90

Table 1. Parameters for the reference setting of the Owl dataset.



Figure 8. Reblurring results on one view in the Owl dataset. Using the reconstruction result from the thin and thick lens models, we have
synthetically defocused an estimate of the scene radiance and compared to the corresponding image from the captured focal stack.

Dataset Model Focus Setting PSNR (dB)
0 1 2 3 4 5 6

Owl Thin 30.80 32.62 32.31 29.32 28.75 - -
Thick 35.83 39.28 38.90 35.07 32.65 - -

Skull Thin 31.78 32.81 32.27 32.59 31.49 30.42 29.64
Thick 35.51 37.10 37.88 37.57 35.69 34.31 32.81

Table 2. Results of the comparison between the synthetically generated and the captured images. These results were generated from a
single view and across all focus settings for each dataset. In all cases, the thick lens model outperforms the thin lens model.

Our framework produces view-dependent reconstruc-
tions as seen in Figure 7. We assess the accuracy of the
camera models by synthesising reblurred images using the
recovered depth, and comparing to the captured images.

The effectiveness of our thick lens model is shown quan-
titively in Table 2 and qualitatively in Figure 8. From our re-
sults, it is clear our thick lens model and calibration outper-
forms the thin lens model in all tested cases. While the poor
performance of the thin lens model may be exaggerated in
our framework due to its iterative nature, these results illus-
trate its inherent limitations. By generalising the camera to
a thick lens under the same conditions, reconstruction ac-
curacy, and therefore defocus modelling, significantly im-
proves. In a multi-view context, the thin lens reconstruc-
tions in Figure 9 do not coincide with one another. In con-
trast, our model produces consistent point clouds from mul-
tiple views as seen in Figure 1; supporting our hypothesis.
Additional results can be found in supplementary work.

7. Conclusion

In this paper, we have demonstrated the limitations im-
posed by the thin lens camera model. Despite its success
in DFD literature, it has restricted many previous works to
coarse, single-view reconstructions that are not geometri-
cally consistent. Here, we propose an alternative approach
by adopting a thick lens model. Using our novel calibration
procedure, we accurately model defocus formation across
a registered focal stack. We apply this model to gener-

ating high quality 3D reconstructions of complex materi-
als; something that was not previously feasible. The re-
sults shown verify our calibration approach, and demon-
strate a significant improvement over the traditional model.
We foresee our model being applied to reconstructing even
smaller scenes, where the performance of traditional defo-
cus modelling degrades further still; and potentially trans-
lating to other fields such as microscopy.

In our model, we assume defocus formation is consis-
tent with a Gaussian convolution, which is not the case in
reality. In future work, it would be interesting to explore
the benefits of accurate PSF modelling; either with coded
aperture or by directly measuring the camera PSF. We also
intend to incorpoate deep learning to further improve the
performance of our camera model.
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Figure 9. Multi-view reconstruction of the Owl dataset using the
thin lens model. Due to the inaccurate defocus modelling, none of
the individual point clouds intersect to form a coherent surface.
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