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The damping efficiency of vertical porous baffles is investigated for
a dynamically coupled fluid-vessel system. The system comprises of
a two-dimensional vessel, with a rectangular cross-section, partially
filled with fluid, undergoing rectilinear motions with porous baffles
obstructing the fluid motion. The baffles pierce the surface of the
fluid, thus the problem can be considered as separate fluid filled
regions of the vessel, connected by infinitely thin porous baffles, at
which transmission conditions based on Darcy’s law are applied.
The fluid is assumed to be inviscid, incompressible and irrotational
such that the flow in each region is governed by a velocity poten-
tial. The application of Darcy’s law at the baffles is significant as
it makes the system non-conservative, and thus the resulting char-
acteristic equation for the normal modes leads to damped modes
coupled to the moving vessel. Numerical evaluations of the charac-
teristic equation show that the lowest frequency mode typically has
the smallest decay rate, and hence will persist longest in an exper-
imental setup. The maximum decay rate of the lowest frequency
mode occurs when the baffles split the vessel into identically sized
regions.

1 Introduction

When a vessel, partially filled with fluid, is constrained to move in some prescribed motion,
the fluid within can experience complex motions. As the fluid sloshes back and forth in
the vessel it interacts with the vessel walls, generating forces and moments on the vessel.
If the vessel is free to move under the forces generated by the fluid motion (perhaps in
some constrained manner) then this coupled motion could be stabilizing or destabilizing
to the overall system. A simple everyday example of this instability is when we spill
coffee while walking to our seat [1]. The destabilizing aspect of coupled sloshing can have
disastrous effects, such as capsizing King crab boats [2], so being able to identify and
mitigate against such effects is important. For example, the coffee spilling problem could
be mitigated against using a ‘carry cradle’ which reduces the amplitude of the feedback
response [3]. In the current paper we consider a simple model which mitigates against
destabilization via the use of porous baffles.
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Rigid impermeable baffles were first used to minimise sloshing in fuel tanks within
the space industry [4, 5], mainly by simply blocking the fluid flow. They were also
investigated for use in Tuned Liquid Dampers (TLDs), which are vessels partially filled
with fluid, constrained to one-dimensional motions, with a spring acting as a restoring
force of the system. Such dampers are typically used as stabilizers in highrise buildings
to damp out oscillations induced by earthquakes or strong winds [6]. As well as just
blocking the flow, baffles can also stabilize the system by altering the natural frequency of
the system, such that forcing terms potentially act out of phase with the forcing frequency,
causing flow velocities and accelerations to be less severe. Turner et al. [7] investigated
such a scenario for multiple surface piercing impermeable baffles, which essentially split
the vessel into multiple compartments. They found the frequency of the modes in the
system were altered by the baffles and that potential internal resonances existed. Alemi
Ardakani & Turner [8] devised an effective and efficient numerical scheme to model this
system in the limit of shallow-water fluids, and investigated the effect on the system when
considering a nonlinear spring.

Porous baffles have been well studied in the context of TLDs and ship fuel tanks, for
example, because in these cases the baffles provide an important damping mechanism
to the fluid in the system [9, 10]. Even the simplest scenario of forced sloshing in a
rectangular vessel has been well studied via experimental and numerical simulations,
using submerged or surface piercing baffles, set in various configurations such as vertical,
horizontal or slanted baffles [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Whilst there are a
varying array of results on such systems, the key messages are that the width of the baffles
are not hugely significant, but the position and composition of the baffles are key to the
amount of damping observed in the system [21, 22]. The construction of the porous baffle
(e.g. randomly drilled porous metal blocks or regular perforated plates etc.) also has a
significant effect on how best to model the transmission of the fluid through the baffle.
Differing approaches to modelling the transmission conditions [23] include using Darcy’s
law [24, 25, 26, 27] or using a pressure drop condition [28, 29], which has also been applied
to other water wave problems [30, 31].

The originality of the current paper is, we examine the effect of porous, surface pier-
cing, baffles in a dynamically coupled rectangular TLD system with a linear restoring
force. The novel difference here compared to the forced problems considered above, is
that the motion of the vessel, which we assume is able to move in a single space di-
mension, is not known a priori and needs to be solved for. In order to gain a physical
understanding of the significance of the baffle, we consider an idealised system consisting
of an inviscid, incompressible, irrotational fluid in a rectangular vessel, where the vessel
motion is modelled by a forced pendulum equation. Such an approximation is suitable
over relatively short time periods, where viscosity doesn’t have time to act significantly.
The current formulation could be amended to incorporate viscosity by including artificial
dissipation [32, 33] or by adding additional terms to the free-surface boundary conditions
[34]. The fluid transmission across the baffle is modelled using Darcy’s law, such that the
velocity of the fluid at the baffle is directly proportional to the pressure difference across
the baffle itself. Unlike for the zero baffle and impermeable baffle dynamical problems
considered previously [35, 7], the porous baffle makes the system nonconservative and
hence energy is extracted from the system. The main goal of this paper is to show that
for a single baffle system an analytic characteristic equation can be derived for the nat-
ural frequencies of the system, to identify the parameters for which the system decays the
fastest and to quantify how this maximum decay rate varies in terms of these parameters.
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The current paper is laid out as follows. In §2 we formulate the governing nonlinear
equations, and seek normal mode solutions after linearising about a quiescent state. For
the single baffle problem an explicit analytical characteristic equation is derived, which is
solved numerically. Results of the characteristic equation for a single baffle are presented
in §3.1 including both complex frequency values, and free-surface elevations, while multiple
baffle cases are considered in §3.2. Concluding remarks are given in §4.

2 Formulation

We consider the two-dimensional coupled sloshing system as detailed in figure 1. Here
(X, Y ) is a fixed coordinate system, while (x, y) are Cartesian coordinates fixed to the
moving vessel. The coordinate systems are related via,

X = x+ q(t), Y = y + y0,

where q(t) is the time dependent extension of the spring attached to the vessel and the
wall at X = 0, and y0 is a constant.

Y

X0

x
q(t)

ν

x0 = 0

y

x1 x2

L1 L2

Figure 1: Schematic diagram of a two-dimensional fluid-filled vessel with rectangular cross-
section, and a porous baffle at x = x1. The vessel is restricted to move in x-direction and
is connected to X = 0 via a linear spring of stiffness ν. The function q(t) denotes the
extension of the spring from its equilibrium position.

We derive the system of equations for a single baffle for simplicity, but the approach
can be extended to incorporate any number of baffles. We consider the vessel divided into
two regions by a porous baffle at x = x1, labeled region 1 and region 2 from left to right,
with x ∈ [0, x1] for region 1 and x ∈ [x1, x2] in region 2. The lengths of each region are L1

and L2 respectively, hence x1 = L1 and x2 = L1 + L2, and the fluid occupies the region

xj−1 ≤ x ≤ xj and 0 ≤ y ≤ hj(x, t),

for j = 1, 2, with x0 = 0. Our ultimate goal in this work is to linearise about a quiescent
state, hence the fluid velocities in the system are assumed to be low enough such that
the fluid can be modelled as inviscid, incompressible and irrotational, without any wave
breaking episodes. In this scenario the velocity components relative to the moving frame
in each region (ûj, v̂j) can be derived in terms of a velocity potential ϕj(x, y) such that

ûj =
∂ϕj

∂x
− q̇(t), v̂j =

∂ϕj

∂y
. (2.1)
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Mass continuity then states that the velocity potentials satisfy Laplace’s equation

∂2ϕj

∂x2
+
∂2ϕj

∂y2
= 0, (2.2)

in each region.
The fluid pressure in each region is found via the unsteady Bernoulli equation which

states
pj
ρ

+
∂ϕj

∂t
+

1

2

[(
∂ϕj

∂x

)2

+

(
∂ϕj

∂y

)2
]
− q̇

∂ϕj

∂x
+ gy +

1

2
q̇2 = 0,

where ρ is the constant density of the fluid, the dot indicates differentiation with respect
to t and the Bernoulli constant has been absorbed into a linear time-dependent term of ϕj.
Evaluating this on the free-surface (y = hj(x, t)) gives the dynamic boundary condition
(pj = 0) as

∂ϕj

∂t
+

1

2

[(
∂ϕj

∂x

)2

+

(
∂ϕj

∂y

)2
]
− q̇

∂ϕj

∂x
+ ghj +

1

2
q̇2 = 0, (2.3)

while the corresponding kinematic boundary condition is

∂hj
∂t

+

(
∂ϕj

∂x
− q̇

)
∂hj
∂x

=
∂ϕj

∂y
, (2.4)

for j = 1, 2. Zero penetration boundary conditions are applied on the bottom and side
walls of the vessel, thus

∂ϕj

∂y

∣∣∣∣
y=0

= 0, and
∂ϕ1

∂x

∣∣∣∣
x=0

=
∂ϕ2

∂x

∣∣∣∣
x=x2

= q̇, (2.5)

in the moving frame. We assume that the effects of the front and back walls of the vessel
are negligible, such that our two-dimensional assumption is valid. Such an assumption
has been proved to be valid such as in the work of [36] who showed the two-dimensional
approximation agreed very well with experimental results.

The baffle at x = x1 is porous and as such, fluid is able to transmit between the
regions. We do not physically model the fluid flow through the baffle, and instead use a
transition condition to link the fluid velocities in the bulk fluid at the baffle to the pressure
drop across the baffle. In this paper our main goal is to consider linear solutions to the
governing equations in §2.1 about a fluid at rest. Hence our interest is in small magnitude
fluid motions. Given this assumption, and the fact that the baffle is coherent, we apply
a transmission condition based upon Darcy’s law [24, 37], namely that the velocity is
continuous across the baffle with

∂ϕ1

∂x

∣∣∣∣
x=x1

=
∂ϕ2

∂x

∣∣∣∣
x=x1

= q̇ − β

ρ
(p2(x1, y, t)− p1(x1, y, t)) . (2.6)

At larger fluid velocities where nonlinear effects are more important the transmission
condition can modelled via a Darcy-Forchheimer model [38] which includes a quadratic
velocity term. At very large velocities this quadratic term dominates the transmission
condition and a model as in [29] becomes applicable to leading order.

In (2.6) β is a complex coefficient which describes the porosity of the baffle, and has
the dimensions of sm−1. The complex form of β = βr + iβi (βr, βi > 0) is such that the
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real part represents the resistance effect of the baffle against the flow, while the imaginary
part represents the inertial effect of the fluid in the baffle [25, 27, 39, 40]. Experimental
results for perforated plates show that βi ≈ 0.1βr [41] and hence is typically small, so we
will mostly consider βi = 0, but we do consider cases with βi ̸= 0 to show the effect of
this quantity. The case |β| = 0 indicates that the baffle is impermeable (as considered
in [7]), while |β| → ∞ indicates the baffle has no effect on the fluid motion, hence its
presence can be neglected, and the vessel reduces to a single region vessel (as considered
in [35]). In this work we consider our porosity parameter β to be a constant and we do not
consider how its value relates to the physical construction of the baffle. In more complex
scenarios such as in [29], the transmission rate of the baffle can be related to more physical
parameters such as the solidity ratio. However, as we are not quantitatively fitting our
results to experiments we do not go to this extent here.

The equation for the vessel motion, which couples to the fluid motion, is given via the
forced linear pendulum equation

mv q̈ + νq = − d

dt

[∫ L1

0

∫ h1

0

ρ
∂ϕ1

∂x
dydx+

∫ L1+L2

L1

∫ h2

0

ρ
∂ϕ2

∂x
dydx

]
, (2.7)

where ν is the linear stiffness of the spring connected to the vessel. Here we assume a
linear spring only, for simplicity, as we will be seeking modal solutions in §2.2.

Equations (2.2)-(2.7) denote the nonlinear system of equations which govern the
coupled sloshing problem for the fluid and vessel motions.

2.1 Linearised Equations

We wish to determine the modal solutions of the linearised system about a quiescent
state. These would be the natural frequencies that the system would want to oscillate at
if initialized appropriately. In a quiescent state we assume the fluid has equilibrated such
that h1 = h2 = H, and that the pressure in each region is hydrostatic pj = ρg(H − y).
Therefore we introduce the perturbed quantities, denoted with a bar, such that

q(t) = ϵq(t),

hj(x, t) = H + ϵhj(x, t),

ϕj(x, y, t) = ϵϕj(x, y, t),

pj(x, y, t) = ρg(H − y) + ϵpj(x, y, t),

where 0 < ϵ ≪ 1 indicates the size of the perturbation and is small enough for linear-
isation. Substituting these expressions into (2.2)-(2.7) and retaining terms of O(ϵ) only,
leads to the following set of linear equations

ϕjxx + ϕjyy = 0, 0 < y < H, xj−1 < x < xj, (2.8)

ϕjy(x, 0, t) = 0, (2.9)

ϕ1x(0, y, t) = ϕ2x(x2, y, t) = q̇, (2.10)

ϕ1x(x1, y, t) = ϕ2x(x1, y, t) = q̇ − β

ρ
(p2(x1, y, t)− p1(x1, y, t)), (2.11)

ϕjt + ghj = 0 on y = H, (2.12)

hjt = ϕjy on y = H, (2.13)
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with the pressure perturbation given by

pj
ρ

+ ϕjt = 0, (2.14)

and the vessel equation becoming

mv q̈ + νq = − d

dt

[∫ L1

0

∫ H

0

ρ
∂ϕ1

∂x
dydx+

∫ L1+L2

L1

∫ H

0

ρ
∂ϕ2

∂x
dydx

]
. (2.15)

Here, and in the remainder of the paper, the subscripts x, y, t denote partial derivatives.
The governing set of linear equations can be manipulated into a problem dependent

solely on the velocity potential ϕj and the spring extension q by combining the free-surface

conditions (2.12) and (2.13) to eliminate hj

ϕjtt + gϕjy = 0 on y = H, (2.16)

and by using the pressure perturbation (2.14) to write the boundary conditions on the
porous baffle as

ϕ1x(x1, y, t) = ϕ2x(x1, y, t) = q̇ + β
[
ϕ2t(x1, y, t)− ϕ1t(x1, y, t)

]
. (2.17)

The resulting linear equations can be solved by seeking normal mode solutions.

2.2 Normal Modes

We seek modal solutions of the linear system of equations (2.8)-(2.10) and (2.15)-(2.17) so
as to identify the natural frequencies of the system, which in a physical system, comprise
the components of all solutions via superposition. To identify the modal solutions we
write

ϕj(x, y, t) = ϕ̂j(x, y)e
iωt, q(t) = q̂eiωt. (2.18)

Unlike for the impermeable baffle problem considered in [7], the form of the solution in
(2.18) consists of a superposition of both sinωt and cosωt terms, and also allows for the
consideration of ω being complex.

Substituting (2.18) into the governing linear equations leads to the following boundary
value problem for the hatted variables

ϕ̂jxx + ϕ̂jyy = 0, 0 < y < H, xj−1 < x < xj, (2.19)

ϕ̂jy(x, 0) = 0, (2.20)

ϕ̂1x(0, y) = ϕ̂2x(x2, y) = iωq̂, (2.21)

ϕ̂1x(x1, y) = ϕ̂2x(x1, y) = iωq̂ + iβω
(
ϕ̂2(x1, y)− ϕ̂1(x1, y)

)
, (2.22)

ω2ϕ̂j(x,H) = gϕ̂jy(x,H), (2.23)

with vessel equation

[
ν −mvω

2
]
q̂ = iω

[∫ L1

0

∫ H

0

ρ
∂ϕ̂1

∂x
dydx+

∫ L1+L2

L1

∫ H

0

ρ
∂ϕ̂2

∂x
dydx

]
. (2.24)

The homogeneous nature of the free-surface and bottom boundary conditions means
the problem lends itself to seeking a solution for ϕ̂j in each region as a superposition
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of vertical eigenmodes. Properties of these vertical eigenmodes have been explored in
[42], and for the coupled, single region, sloshing problem in [35]. Hence we quote here
the relevant results for this paper, and refer the reader to these works for full details.
Therefore the separable solution to (2.19) which satisfies (2.20) and (2.23) can be written
as

ϕ̂j(x, y) =
∞∑
n=0

Ajn(x)ψn(y), (2.25)

where the vertical eigenmodes ψn(y) have the form

ψ0(y) =
1

N0

cosh k0y, and ψn(y) =
1

Nn

cos kny for n ≥ 1.

The constants N0 and Nn are normalization constants given by

N0 =

√
1

2

(
1 +

sinh 2k0H

2k0H

)
, Nn =

√
1

2

(
1 +

sin 2knH

2knH

)
,

while the eigenvalues k0 and kn satisfy

k0H tanh k0H − ω2H

g
= 0, (2.26)

knH tan knH +
ω2H

g
= 0 for n ≥ 1, (2.27)

which derive from the characteristic equation

ω2H

g
cos

(
H
√
λ
)
+
(
H
√
λ
)
sin

(
H
√
λ
)
= 0,

where λ is the eigenvalue.
In [42] and [35], where these eigenmodes are discussed, the frequency ω is real. Hence

the first eigenvalue of the system is negative, λ0 = −k20 (
√
λ0 being purely imaginary),

and is associated with the ‘wave mode’, while the rest are positive, λn = k2n n ≥ 1,
and are associated with the ‘evanescent modes’. In the case when ω is complex, all the
eigenvalues λn move off the real axis and become complex, and hence it may seem that
the distinction between the wave mode and the evanescent modes becomes less obvious.
However, in this case there is a single mode with Re(λ0 = −k20) < 0, while the other
modes have Re(λn = k2n) > 0 and so we still find a wave mode plus evanescent modes
structure even when ω is complex. Hence we still use these terms when describing the
modes of the system.

The forms of the functions Ajn(x) are found by satisfying Laplace’s equation, which
after satisfying the rigid wall boundary conditions (2.21) in the respective region, can be
written as

A10(x) = B10 cos k0x+
iωq̂c0
k0

sin k0x, (2.28)

A1n(x) = B1n cosh knx+
iωq̂cn
kn

sinh knx for n ≥ 1, (2.29)

A20(x) = B20 cos k0(x− x2) +
iωq̂c0
k0

sin k0(x− x2), (2.30)

A2n(x) = B2n cosh kn(x− x2) +
iωq̂cn
kn

sinh kn(x− x2) for n ≥ 1, (2.31)
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where Bjn for j = 1, 2 and n ≥ 0 are constants to be determined. The constants c0 and
cn come from expanding the unit function in terms of the vertical eigenfunctions, and are
given by

c0 =
1

N0

sinh k0H

k0H
, cn =

1

Nn

sin knH

knH
. (2.32)

Satisfying the conditions (2.22) at the porous baffle x = x1 = L1 reduces to the 4
equations

k0 sin k0L1B10 + k0 sin k0L2B20 = −iωc0(cos k0L2 − cos k0L1)q̂, (2.33)

(k0 sin k0L1 − iωβ cos k0L1)B10 + iβω cos k0L2B20

= ωc0

[
i(cos k0L1 − 1)− βω

k0
(sin k0L1 + sin k0L2)

]
q̂, (2.34)

kn sinh knL1B1n + kn sinh knL2B2n = iωcn(cosh knL2 − cosh knL1)q̂, (2.35)

(kn sinh knL1 + iωβ cosh knL1)B1n − iβω cosh knL2B2n

= ωcn

[
i(1− cosh knL1) +

βω

kn
(sinh knL1 + sinh knL2)

]
q̂, (2.36)

for n ≥ 1. The second pair of equations (2.35) and (2.36) for b = (B1n, B2n)
T can be

written in matrix form Ab = q, where

q = ωcn

[
i(cosh knL2 − cosh knL1)

i(1− cosh knL1) +
βω
kn
(sinh knL1 + sinh knL2)

]
q̂,

A =

[
kn sinh knL1 kn sinh knL2

kn sinh knL1 + iωβ cosh knL1 −iωβ cosh knL2

]
.

This system of equations has a unique solution if det(A) ̸= 0 where

det(A) = −k2n sinh knL1 sinh knL2∆n, ∆n = 1 +
iωβ

kn
[coth knL1 + coth knL2] .

This expression is zero if kn = 0, which we can discard as a translation of the system, or
sinh knL1 = sinh knL2 = 0, or if ∆n = 0. The sinh knL1 = sinh knL2 = 0 case corresponds
to kn being purely imaginary, which in fact corresponds to this mode being associated with
the wave mode for ω real, and hence is just a reordering of the eigenvalues. The third case
leads to the trivial solution for Bjn. Therefore we can consider the case det(A) ̸= 0 and
deal with the above cases later. Assuming det(A) ̸= 0, inverting the coefficient matrix
A, and solving gives

Bjn =
(−1)j

k2n|∆n|2
[
−ω2βcn

tanh 1
2
knL1 + tanh 1

2
knL2

sinh knLj

+i

(
ωcnkn tanh

1

2
knLj +

ω3β2cn
kn

tanh
1

2
kn(L1 + L2) (coth knL1 + coth knL2)

2

)]
q̂,

(2.37)

for j = 1, 2 and n ≥ 1.
Next we consider the first pair of equations (2.33) and (2.34), which too can be written

in matrix form Âb̂ = q̂, for the parameters b̂ = (B10, B20)
T with

q̂ = ωc0

[ −i(cos k0L2 − cos k0L1)

i(cos k0L1 − 1)− βω
k0
(sin k0L1 + sin k0L2)

]
q̂,

Â =

[
k0 sin k0L1 k0 sin k0L2

k0 sin k0L1 − iωβ cos k0L1 iβω cos k0L2

]
. (2.38)
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Again we have a unique solution if det(Â) ̸= 0 where

det(Â) = −k20 sin k0L1 sin k0L2∆0, ∆0 = 1− iωβ

k0
[cot k0L1 + cot k0L2] .

In this case det(Â) = 0 if sin k0L1 = sin k0L2 = 0 simultaneously (again neglecting
k0 = 0), which occurs if

k0L1 = mπ and k0L2 = m′π,

for m,m′ ∈ Z, and thus means the lengths of the two compartments must satisfy mL2 =
m′L1. These solutions correspond to symmetric free-sloshing modes with k0 ∈ R. Also
det(Â) could be zero if ∆0 = 0, i.e. ω = −ik0/(β(cot k0L1 + cot k0L2)), but this again
leads to the trivial solution. See Appendix A for more on these solutions.

Making the observation that det(Â) could be zero, then (2.33) and (2.34) essentially
become two equations which couple the three unknowns B10, B20 and q̂. A third equa-
tion linking these constants comes from the vessel equation (2.24). Substituting in the
normal mode forms (2.18) and evaluating the integrals by using the fact that the vertical
eigenmodes satisfy ∫ H

0

ψ0(y) dy = Hc0 and

∫ H

0

ψn(y) dy = Hcn,

leads to the vessel equation

iωρHc0(cos k0L1 − 1)B10 + iωρHc0(1− cos k0L2)B20 +Θq̂ = 0, (2.39)

where

Θ = −ω
2ρHc20
k0

(sin k0L1 + sin k0L2) + Θ̂0 + β2Θ̂1 − βiΘ̂2, (2.40)

and

Θ̂0 = ν −mvω
2 − 2ω2ρH

∞∑
n=1

c2n

kn|∆̂n|2

(
tanh

1

2
knL1 + tanh

1

2
knL2

)
,

Θ̂1 = −2ω4ρH

∞∑
n=1

c2n

k3n|∆̂n|2
tanh

1

2
kn(L1 + L2) (coth knL1 + coth knL2)

2 ,

Θ̂2 = −ω3ρH
∞∑
n=1

c2n

k2n|∆̂n|2

[
tanh

1

2
knL1 + tanh

1

2
knL2

]2
.

The three equations (2.33), (2.34) and (2.39) define 3 equations for the 3 unknowns B10,
B20 and q̂, which by seeking a non-trivial solution, yields an eigenvalue problem for ω.

2.3 The Characteristic Equation

The characteristic equation for the unknown frequency ω is found by identifying non-
trivial solutions to (2.33), (2.34) and (2.39). The equations can be written as the matrix
problem

Tz = 0, (2.41)
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where,

T =

 k0 sin k0L1 k0 sin k0L2 iωc0(cos k0L2 − cos k0L1)
k0 sin k0L1 − iωβ cos k0L1 iωβ cos k0L2 −ωc0ζ
iωρHc0(cos k0L1 − 1) iωρHc0(1− cos k0L2) Θ

 ,
z =

[
B10 B20 q̂

]T
,

and

ζ = i(cos k0L1 − 1)− ωβ

k0
(sin k0L1 + sin k0L2).

Non-trivial solutions occur when the determinant of the coefficient matrix is zero, which
leads to the characteristic equation

D(ω) = 2k0ω
2Hρc20 sin k0L1 sin k0L2

[
tan

1

2
k0L1 + tan

1

2
k0L2

]
−2iβω3Hρc20 [1− cos k0(L1 + L2)]

−(Θ̂0 + β2Θ̂1 − iβΘ̂2)
[
k20 sin k0L1 sin k0L2 − iωβk0 sin k0(L1 + L2)

]
,

which is solved for the unknown frequencies ω. There are an infinite number of natural
frequencies, and once each is calculated, the corresponding eigenvector (B10, B20, q̂)

T gives
the ratios of the unknown amplitudes. In appendix A we show that the symmetric free-
sloshing modes, when sin k0L1 = sin k0L2 = 0, occur when the vessel is at rest (q̂ ≡
0). Here the constants satisfy B10 = B20 and are arbitrary, being fixed by the initial

conditions. In the case of non-symmetric sloshing modes when det(Â) ̸= 0 then we can
solve for B10 and B20 as a function of q̂ as

Bj0 =
(−1)j

k20|∆0|2
[
ω2βc0

tan 1
2
k0L1 + tan 1

2
k0L2

sin k0Lj

+i

(
ωc0k0 tan

1

2
k0Lj +

ω3β2c0
k0

tan
1

2
k0(L1 + L2) (cot k0L1 + cot k0L2)

2

)]
q̂,

(2.42)

where q̂ is dependent on the initial conditions. Hence, as in (2.37), the value of Bj0 couples
to the vessel motion.

2.4 Non-dimensionalisation

The characteristic equation (2.42) contains many physical parameters, but the number of
these parameters can be reduced by considering the non-dimensional form of the system.
We non-dimensionalise the system of equations based on the non-dimensionalisation first
set out by [43]. Here we define the non-dimensional quantities as

R =
mv

mf

, G =
ν(L1 + L2)

2

4gHmf

, s =
ω(L1 + L2)

2
√
gH

, γ = 2
√
gHβ,

αn = kn(L1 + L2), µ1 =
L1

L1 + L2

= µ, µ2 =
L2

L1 + L2

= 1− µ,

Cjk =
Bjk

2
√
gH(L1 + L2)

, Q =
q̂

L1 + L2

,
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where we define the fluid mass as mf = ρH(L1 + L2). Then the characteristic equation
becomes

D(s) = 2α0s
2c20 sinα0µ sinα0(1− µ)

[
tan

1

2
α0µ+ tan

1

2
α0(1− µ)

]
− 2iγs3c20 [1− cosα0]

−(Θ0 + γ2Θ1 − iγΘ2)
[
α2
0 sinα0µ sinα0(1− µ)− isγα0 sinα0

]
, (2.43)

where we define

Θ0 = G−Rs2 − 2s2
∞∑
n=1

c2n
αn|∆n|2

(
tanh

1

2
αnµ+ tanh

1

2
αn(1− µ)

)
,

Θ1 = −2s4
∞∑
n=1

c2n
α3|∆n|2

tanh
1

2
αn (cothαnµ+ cothαn(1− µ))2 ,

Θ2 = −s3
∞∑
n=1

c2n
αn|∆n|2

(
tanh

1

2
αnµ+ tanh

1

2
αn(1− µ)

)2

,

(2.44)

and

|∆n|2 = 1 +
γ2s2

α2
n

[cothαnµ+ cothαn(1− µ)]2 .

The eigenvalues αn for n ≥ 0 are found from (2.26) and (2.27) which in non-dimensional
form are

α0 tanhα0δ − 4δs2 = 0, and αn tanαnδ + 4δs2 = 0, (2.45)

where δ = H/(L1 + L2) is the non-dimensional fluid depth parameter.

For cases when det(Â) ̸= 0 the non-dimensional forms of the amplitude parameters
(2.42) and (2.37) become

Cj0 =
(−1)j

α2
0|∆0|2

[
s2γc0

tan 1
2α0µ+ tan 1

2α0(1− µ)

sinα0µj

+i

(
sc0α0 tan

1

2
α0µj +

s3γ2c0
α0

tan
1

2
α0 (cotα0µ+ cotα0(1− µ))2

)]
Q, (2.46)

Cjn =
(−1)j

α2
n|∆n|2

[
−s2γcn

tanh 1
2αnµ+ tanh 1

2αn(1− µ)

sinhαnµj

+i

(
scnαn tanh

1

2
αnµj +

s3γ2cn
αn

tanh
1

2
αn (cothαnµ+ cothαn(1− µ))2

)]
Q, (2.47)

respectively, for j = 1, 2, where

|∆0|2 = 1 +
γ2s2

α2
0

[cotα0µ+ cotα0(1− µ)]2 .

The characteristic equation (2.43) can be shown to reduce to the equation presented
in [35] when |γ| → ∞ and to the two compartment relation in [7] when |γ| = 0. We show
this explicitly in appendix B where we calculate the first two terms of the asymptotic
solutions for s in the limits γ → 0 and γ → ∞ with γ ∈ R.
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2.5 Shallow-Water Limit

In the shallow-water limit the depth parameter δ ≪ 1, with all other parameters held
fixed. The eigenvalues related to the vertical eigenfunctions satisfy (2.45), the first of
which describes the wave mode. In the limit δ → 0 then

4δ2s2 = α2
0δ

2 − 1

3
α4
0δ

4 +O(δ6),

which at leading order gives

s =
1

2
α0.

For the evanescent modes, we observe that each solution must lie in the range (n− 1)π <
Re(αnδ) < nπ, thus it can be shown that

αnδ = nπ − α2
0δ

2

nπ
+O(δ4).

Substituting these approximations into the coefficients c0 and cn we find that the leading
order terms satisfy

c0 = 1 +O(δ4), and cn = O(δ2).

Hence in the shallow-water limit the evanescent modes are O(δ2) smaller in magnitude to
the wave mode, and at leading order the characteristic equation can be written solely in
terms of the frequency s as

DSW(s) = 4s2 sin 2µs sin 2(1− µ)s
[
s tanµs+ s tan(1− µ)s−G+Rs2

]
−2iγs2 sin 2s

[
s tan s−G+Rs2

]
. (2.48)

In this limit the form of the characteristic equation is the sum of the two compartment
shallow-water equation from [7] and the one compartment shallow-water equation from
the work of [35] with an iγ prefactor. Hence it is clear that this equation gives the correct
characteristic equations in the limits |γ| = 0 and |γ| → ∞, and there is a linear transition
between the two cases as γ varies.

3 Results

3.1 Single Baffle System

In this section we consider numerical solutions to the non-dimensional form of the char-
acteristic equation for both finite, (2.43), and shallow depth, (2.48), fluids. In both cases
the unknown complex frequency s is found via Newton iterations with the mth update for
s given by

sm+1 = sm − D(sm)

D′(sm)
,

where the dash denotes differentiation with respect to s. For the initial guesses for s0

we use either results from the |γ| = 0 or |γ| → ∞ limits, as here s ∈ R and we can
identify s0 visually by plotting D(s) and manually looking for the roots. Iterations are
continues until |sm+1 − sm| < 10−8. From these results we use parameter continuation
techniques on γ to find values of s at finite values of γ, both real and complex. The
complex eigenvalues αn are identified by solving (2.45) iteratively via Newton iterations,
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and noting that (n−1)π < Re(αnδ) < nπ so as to make sure we capture all the solutions.
The infinite sums in (2.44) are truncated at 40 evanescent modes, which give converged
results for all parameter sets considered. The initial guesses for αn are found by solving
the vertical eigenvalue problem given in [35] directly by expanding the solution as a series
of Chebyshev polynomials. This is discussed in detail in [35].

Initially we focus on two vessel configurations, a symmetric configuration with µ = 0.5
and an asymmetric configuration with µ = 0.3, with γ ∈ R. In figure 2 we consider the
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Figure 2: Plots of sr(γ) and si(γ) from (2.43) for (G,R, δ) = (1, 0.5, 0.5) and (a,b) µ = 0.5
and (c,d) µ = 0.3. The dashed lines represent modes which are symmetric modes in a
stationary vessel (Q = 0) in the limit γ → ∞. The circles at γ = 0 signify symmetric
sloshing modes in this limit.

variation of the real and imaginary parts of s = sr + isi as a function of γ for parameters
(G,R, δ) = (1, 0.5, 0.5) and (a,b) µ = 0.5 and (c,d) µ = 0.3. In this figure the solid lines
represent modes which are anti-symmetric sloshing modes (which couple to a moving
vessel) in the γ → ∞ limit, while the dashed lines represent symmetric modes (i.e. which
exist in a stationary vessel), in the γ → ∞ limit. The circles at γ = 0 show the frequencies
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of the symmetric sloshing modes in the γ = 0 limit. For the µ = 0.5 configuration in
panels (a,b), we observe that the symmetric modes remain symmetric modes as the wall
porosity parameter γ is varied, with a fixed sr value and si = 0. This means that these
modes remain neutral modes, and the vessel remains stationary, i.e. Q = 0 as γ varies.
In these cases the free-surface profile is similar to that given in figure 11 of Appendix A,
where the fluid generates an equal and opposite force on the vessel walls and the baffle,
resulting in no net force on the vessel.

The solid lines, representing the anti-symmetric modes, couple to the vessel motion,
hence Q ̸= 0. Here we see that for γ ≳ 5 these modes appear to have a constant value
of sr equal to the γ → ∞ limit result, but in panel (b) we see these modes have si > 0,
meaning these modes are exponentially decaying modes. For γ ∈ [0, 5] the frequency (real
part of the complex frequency) of these modes rapidly varies from the γ → ∞ result to
the γ = 0 result. In this region the corresponding decay rate si reaches its maximum
value for each of these modes, hence the maximal damping of the system occurs when sr
varies the greatest. A similar conclusion was found for the lowest sloshing mode only in
the model of [44]. The ordering of the decay rates is not directly related to the value of
sr, i.e. larger sr values do not necessary decay faster/slower than modes with smaller sr
values. In particular in figure 2, we observe that it is the mode labeled 2 which decays
fastest in this system. When this mode intersects with sr = 0 there is a bifurcation into
two unstable modes with sr = 0 and si ̸= 0. The reason for this is due to two modes
with sr = S(γ) and sr = −S(γ) interacting at sr = 0. When sr = 0 for these two modes,
they become unstable modes in a stationary vessel, and hence are not of significance in
this study, as our main interest is in modes which are coupled to the vessel motion. One
thing we do observe in this figure is that the lowest frequency mode as γ → ∞ remains
the lowest frequency mode as γ → 0 (except for a tiny range of γ values where the mode
labeled 2 goes to zero).

When we consider the µ = 0.3 non-symmetric vessel configuration in panels (c,d) we
observe that the symmetric sloshing modes (in either the γ = 0 or γ → ∞ limits) are
no longer neutral for all values of γ, and now decay except in these two limits. Also the
value of sr now varies as γ varies, i.e. they no longer have constant frequency. The overall
behaviour of the mode frequencies, sr, is similar to the µ = 0.5 case, with the variations
in both the real and imaginary parts of s occurring mainly for 0 ≤ γ ≤ 5, and with
similar magnitude decay rates. We again observe a mode (labeled 2) which as γ → 0 we
find sr = 0 for small γ. The difference in this case is this mode is a symmetric mode,
in a stationary vessel, in the γ → ∞ limit, not an anti-symmetric mode. We now also
observe modes which switch type in the two extremes of γ, such as that labeled 3 in panel
(c). This mode is an anti-symmetric mode as γ → ∞, but as γ is reduced it becomes a
symmetric mode at γ = 0.

As δ is reduced to δ = 0.1 (again with (G,R) = (1, 0.5)) in figure 3, i.e. as we move
closer to the shallow-water limit, we find that the higher frequency modes, sr, become
more distinct, i.e. more spread out, as do the decay rates, si, of the modes. As a general
observation, it appears that the maximum decay rates increase in magnitude as δ is
increased. This is particularly apparent in the µ = 0.3 configuration. It is however, still
the case that the majority of the variation in s is restricted to the region γ ≲ 5.

In appendix B we calculate the asymptotic form of s in the limits γ → 0 and γ → ∞
with γ ∈ R. In figure 4 these approximations (dashed lines) are compared to the full
numerical result (solid lines), and we observe excellent agreement in both these limits,
despite both sr and si each containing only one term in their expansions. However,
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Figure 3: Plots of sr(γ) and si(γ) from (2.43) for (G,R, δ) = (1, 0.5, 0.1) and (a,b) µ = 0.5
and (c,d) µ = 0.3. The dashed lines represent modes which are symmetric modes in a
stationary vessel (Q = 0) in the limit γ → ∞. The circles at γ = 0 signify symmetric
sloshing modes in this limit.

this level of approximation is not able to capture the maximum decay rate of the modes
accurately, although it does allow for predictions of the system’s decay in the two extreme
limits, along with an approximate maximum growth rate where the two approximations
intersect. This would be of particular interest if the baffle porosity were time dependent,
with sloshing waves generated with γ = 0 and then the baffle porosity was varied. The
initial rate of decay of the system could then be accurately predicted by the asymptotic
results, especially if the variation was slow.

In figure 5 we consider the form of s = sr + isi when µ = 0.5 (with (G,R, δ) =
(1, 0.5, 0.5)) when γ = γr(1 + 0.1i). Here the imaginary part of γ represents the inertial
effect of the fluid in the baffle, and is typically smaller than the real part [41]. The
results with γ ∈ C, given by the solid lines, are compared to the equivalent results with
γ = γr ∈ R from figure 2(a,b). What this figure shows is the inclusion of inertial effects
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Figure 4: Plot of sr(γ) and si(γ) for two modes from figure 3 with (G,R, δ, µ) =
(1, 0.5, 0.1, 0.3). The solid lines give the numerical solutions of (2.43) while the dashed
lines give the asymptotic results calculated in Appendix B
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Figure 5: Plots of sr(γr) and si(γr) from (2.43) for (G,R, δ) = (1, 0.5, 0.5) and µ = 0.5.
Here γ = γr(1 + 0.1i). The solid lines are the values of sr and si for the complex value
of γ, while the dashed lines are the corresponding result with γ = γr, as given in figure
2(a,b).

typically increases the decay rate, si, of the system for the higher frequency modes, but
makes a relatively modest modification to the lowest frequency mode. The larger peaks
in si in figure 5(b) are accompanied by sharper changes in the corresponding sr value in
figure 5(a). The other obvious change in this case compared to figure 2 is that the sr
value for mode 2 now does not go to zero, where it interacted with a second mode, and
instead sr → ∞ as γr → 0.

In the shallow-water limit, the characteristic equation simplifies to (2.48) and the
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Figure 6: Plots of sr(γ) and si(γ) in the shallow-water limit from (2.48) for (G,R) =
(1, 0.5) and (a,b) µ = 0.5 and (c,d) µ = 0.3. The dashed lines represent modes which are
symmetric modes in a stationary vessel (Q = 0) in the limit γ → ∞. The circles at γ = 0
signify symmetric sloshing modes in this limit.

solutions to this equation, plotted in figure 6, are found to agree well with those in
figure 3, at least for the smaller frequency results. The main benefit of the shallow-
water approximation is that the values of s can be calculated more easily (i.e. without
calculating the intermediary eigenvalues αn). Also, in systems where the lower frequency
modes dominate, and the higher frequency modes can be neglected, then the shallow-water
approximation is beneficial due to the speed of computation.

A typical initial condition for an experimental setup for the system in figure 1, such
as extending the spring and releasing the vessel from a stationary position, would consist
of a superposition of these individual modes. However, unlike for the impermeable baffle
problem, where all modes are undamped and so persist for all times, the higher frequency
modes are typically damped out fastest, and so in this experimental setup we would
expect the lowest frequency mode (as it is the least damped) to be the most significant.
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Also, following [36] the coefficient of the lowest frequency mode tends to have the largest
amplitude in the eigenmode expansion for most initial conditions. Thus we focus our
attention in the remainder of the paper on the lowest frequency mode in the shallow-
water limit.
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Figure 7: Plot of the non-dimensional free-surface elevation hj(x, t) and horizontal velocity
component uj(x, t) = ϕx(x, t) for j = 1, 2 in the shallow-water limit for (G,R, δ, µ, ϵ) =
(1, 0.5, 0.05, 0.3, 0.01) at times t/(2sr) = 0, π
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4
, π numbered 1-5 respectively. In (a,b)

γ = 0.8, (c,d) γ = 1.5, while in (e,f) γ = 5.
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In figure 7 we consider the time evolution of the non-dimensional free-surface profiles
hj(x, t) and horizontal velocity uj(x, t) for the lowest frequency mode in the shallow-water
limit for (G,R, δ) = (1, 0.5, 0.05) with (a,b) γ = 0.8, (c,d) γ = 1.5 and (e,f) γ = 5. The
form of the free-surface profile can be found from (2.12) which when non-dimensionalised
is given by

hj(x, t) = δ −
[
2iϵsAj0(x)e

2ist + c.c
]
, (3.49)

while the non-dimensional horizontal velocity in the fixed reference frame is given by

uj(x, t) =
∂ϕj

∂x
= ϵ

∂Aj0

∂x
(x)e2ist + c.c, (3.50)

where c.c denotes the complex conjugate. Here j = 1, 2 denotes the two separate regions
of the vessel. The wave mode is the driving mode in the system, and hence plotting h(x, t)
and u(x, t) without the evanescent modes provides excellent notion for the fluid motion.
The evanescent modes provide a perturbation to this result, typically reducing the fluid
height, h(x, t), at the side walls and baffle, and increasing it in the interior of the fluid.
This was demonstrated for the zero-baffle problem in [35].

In panels (a,b) the baffle has a low porosity value and so there is a delay in the fluid
flowing between each region, resulting in the average fluid depth in each region being
significantly different at each time value, e.g. result 3 at t = πsr. There is also a very
clear reduction in the horizontal fluid velocity at the baffle, where the fluid motion is
restricted as it passes through it. In panels (c,d) the baffle porosity is larger, and the
difference in the fluid heights at the baffle is reduced, while in panels (e,f) the baffle is
even more porous and the difference in the fluid levels in each region is reduced further.
In fact, in this case the free-surface elevations are almost continuous across the baffle.
The horizontal velocity value at the baffle is also much less reduced in this final case,
meaning the speed of the fluid is altered less by the presence of the baffle, and hence the
lower decay rate of the coupled system.

In figure 8 we make a comparison of plots of h(x, t) and u(x, t) for γ = 0.8(1 + 0.2i)
(solid lines) and γ = 0.8 (dashed lines). Here we have increased the size of γi compared
to the real part to 20%, in order to exaggerate the changes to h(x, t) and u(x, t), but as
we saw in figure 5, the effect on the lowest frequency mode when si ̸= 0 is small. In fact,
it is hard to make any meaningful observation in figure 8, because as γ changes, both sr
and si change, hence the results in this figure include a small phase change as well as a
change in decay rate. Discerning the difference between these two features is difficult in
this figure.

Thus far we have fixed the non-dimensional parameters R and G, but in figure 9 we
examine how the decay rate of the system, si, varies for different (G,R) combinations for
γ ∈ R. The results show that the maximum decay rate always occurs for µ = 0.5 (i.e. for
equally sized regions), with the value of γ ∈ [0, 1.5], i.e. close to the rigid baffle limit. For
(G,R) = (7, 0.5) in panel (b) the rate of damping is significantly increased, which is due
to the spring being stiff in this case but with a heavy fluid mass in the vessel. In this case
the horizontal velocities in the fluid are larger than in (a) (weak spring, heavy fluid), and
hence the fluid is slowed more dramatically by the baffle. In panel (c) we have a light fluid
(heavy vessel) and a weak spring, hence damping rates are low (due to low fluid velocities
in the system). Also, the largest decay rates for this configuration are concentrated in a
narrow band of small porosity values. While in panel (d) where we have a light fluid and
a strong spring, we have a much larger region of the (γ, µ)-plane where the decay rate
of this mode is ≥ 1

4
smax
i . Hence in a physical system with these parameters there is a
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Figure 8: Plot of the non-dimensional free-surface elevation hj(x, t) and horizontal velocity
component uj(x, t) = ϕx(x, t) for j = 1, 2 in the shallow-water limit for (G,R, δ, µ, ϵ) =
(1, 0.5, 0.05, 0.3, 0.01) at times t/(2sr) = 0, π

4
, π
2
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4
, π numbered 1-5 respectively. The solid

lines are the results for the complex value of γ = 0.8(1 + 0.2i), while the dashed lines are
the corresponding result with γ = 0.8, as given in figure 7(a,b).

larger margin for error in the construction of the baffle to have a porosity value needed to
achieve a quick decay of the system. This could be useful if a rapid decay of any forced
oscillations is required, and the porosity of the wall is not able to be altered via some
mechanical means.

3.2 Multiple Baffle System

Thus far we have focused on the single baffle problem, but the theory presented in §2 can
easily be extended to multiple baffles, potentially each with a different porosity value. In
the final part of this paper we consider the case of multiple, identical baffles, which are
equally spaced in the vessel. Hence we only introduce one further parameter, M , which
is the number of baffles. The case M = 1 we have extensively covered.

The challenge in this case is, despite the simple characteristic equation for the M = 1
case in (2.48), this expression very easily becomes complex and unwieldy as M increases.
Hence we consider two simplifications, we only consider the limit of shallow-water fluids,
and we consider direct numerical solutions to the governing boundary condition equations,
rather than forming the characteristic equation analytically and then solving this numer-
ically. To this end, we can write the non-dimensional shallow-water velocity potential in
each vessel region from (2.25) as

ϕj(x) = Âj(x) = B̂j cos(2s(x− xj−1)) + Ĉj sin(2s(x− xj−1)),

where

xj =
j

M + 1
for j = 0, ....,M + 1,

are the dimensionless positions of the vessel side walls and baffles. Here there is no longer a
dependence on y as we are in the shallow-water limit, and the hats denote these constants
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Figure 9: Plots of the decay rate si(γ, µ) for (a) (R,G) = (0.5, 1), (b) (R,G) = (0.5, 7),
(c) (R,G) = (5, 1) and (d) (R,G) = (5, 7). The black contours signify the values 1

4
smax
i ,

1
2
smax
i and 3

4
smax
i in each case.

are dimensionless. This solution satisfies all required equations except for the side-wall,
and baffle boundary conditions, which fix the constants B̂j and Ĉj. For the M baffle
problem the boundary conditions to be satisfied are

Â1x(x0) = isQ,

Â1x(x1) = Â2x(x1) = isQ+ iγs(Â2(x1)− Â1(x1)),

Â2x(x2) = Â3x(x2) = isQ+ iγs(Â3(x2)− Â2(x2)),
... =

...

Â(M+1)x(xM+1) = isQ,

which leads to 2M+2 equations for the 2M+3 unknowns (B̂j, Ĉj and Q). These equations
together with the vessel equation (2.24), which in this notation becomes

is
M+1∑
j=1

[
Âj(xj)− Âj(xj−1)

]
+
[
G−Rs2

]
Q = 0,

can be written as the 2M+3 matrix systemBz = 0 where z = (B̂1, Ĉ1, ...., B̂M+1, ĈM+1, Q)
T .

The characteristic equation would then be found from solving det(B)(s) = 0, such
that there is a non-trivial solution to the above system. Here, rather than formulate this
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Figure 10: Plot of (a) sr(γ) and (b) si(γ) in the shallow-water limit with (G,R) = (1, 0.5),
for multiple, equally spaced porous baffles. The arrows indicate an increase in the value
of M with M = 1, 2, 4, 9, 14 and 19 presented.

determinant analytically, we calculate s directly via Newton iterations, using the Jacobi
formula to determine the derivative of the determinant with respect to s.

In figure 10 we consider results for s = sr + isi for (G,R) = (1, 0.5) and values of
M = 1, 2, 4, 9, 14 and 19 with γ ∈ R. The case M = 1 corresponds to the µ = 0.5 case
presented in figure 6 and shows a peak decay rate of the system located close to γ = 0.
As the number of baffles is increased what we find is that the maximum decay rate,
smax
i , increases to a maximum value at smax

i ≈ 0.031 for M = 19, which is similar to the
maximum decay rate when M = 9, i.e. the increase in decay rate slows for large M . The
reason for this slow down in increasing smax

i is due to what can be seen in panel (a), where
as M increases, the maximum frequency of the multi-baffled vessel at γ = 0 changes only
by a small amount, hence the difference sr(∞) − sr(0) becomes almost constant, which
in turn drives the maximum value of si. The significant conclusion of the result in figure
10 is that placing more equally spaced, porous baffles into a system initially increases the
decay rate, but only up to about M = 9 baffles in this example, after which the increased
decay rate return is minimal. However, what is notable is that the range of γ values over
which there is significant decay is greatly increased. This means that rapid decay can be
achieved in a system with baffles with larger γ (which might be easier and cheaper to
manufacture) rather than having to acquire baffles with small γ, which might be more
expensive to manufacture.

4 Conclusions

In this paper we studied the coupled vessel plus contained fluid, motion for rectilinear
vessel motions and two-dimensional fluid motions, in the presence of porous, surface
piercing baffles. The fluid was assumed to be inviscid, incompressible and irrotational,
such that it can be written in terms of a velocity potential in each connected region. By
linking each region together via a porous wall transmission condition given by Darcy’s
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law, and seeking normal mode solutions about a quiescent state, we derived an explicit
characteristic equation in the single baffle case. The characteristic equation correctly
reduced to the two compartment impermeable baffle case of [7] and the single compartment
case of [35] in the limits |γ| → 0 and |γ| → ∞ respectively, where γ is the non-dimensional
baffle porosity parameter.

The presented results for both finite-depth and shallow-water fluids showed that the
modes which couple to the vessel motion (i.e. not symmetric free-modes in a stationary
vessel) decay exponentially in time, i.e. they have a complex non-dimensional frequency
s = sr + isi with si ≥ 0. There was no obvious connection between the mode’s decay
rate, si, and its frequency, sr, but the maximum decay rate for each mode occurred in
a region of γ values where sr sharply varied from its |γ| = 0 value to its |γ| = ∞ value.
The lowest frequency mode typically had the smallest maximum decay rate (except in
the special vessel configurations with neutral modes), and hence this mode is expected
to be most significant in real systems which contain a superposition of these modes, at
moderate times.

For a vessel configuration with M equally spaced identical baffles we were able to
show that the maximum decay rate for the lowest frequency mode increased as M was
increased towards some limiting value for large M . It was also found that the range of
baffle porosity values γ over which the decay rate was, say, ≥ 3

4
smax
i increased with M .

This means that in a physical system in order to achieve rapid damping, a large number of
baffles should be installed. This could however, be expensive, and so a smaller number of
baffles could be used if the wall porosity is tuned such that the mode frequency generated
by some external mechanism lies close to a value where the lowest frequency mode decays
fastest.

Future work of potential interest is to incorporate baffles which have a time dependent
porosity, such as a wall with movable slats. If the time-scale of the wall porosity change is
faster than the period of the fluid oscillations, then modes could be manipulated to some
maximal decay rate, meaning any induced oscillations could be quickly removed. This
could be particularly significant in Tuned Liquid Dampers in highrise buildings [45]. This
is considered in future work.
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A Free Sloshing Modes

In this appendix we examine the form of the eigenvector (B10, B20, q̂)
T of (2.41) for the

case when det(Â) = 0 for Â in (2.38). We show that these modes are either trivial
solutions to the system or free-sloshing modes in a stationary vessel, q̂ ≡ 0. We now
consider two distinct cases.
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A.1 Case 1: sin k0L1 = sin k0L2 = 0

One solution of det(Â) = 0 is when both sin k0L2 = 0 and sin k0L1 = 0 simultaneously.
As noted in the main text, this amounts to the compartment lengths being related by
mL2 = m′L1 for m,m′ ∈ N. In this case the governing equations of (2.41) reduce to

−iωc0(cos k0L1 − cos k0L2)q̂ = 0,

iωβ(− cos k0L1B10 + cos k0L2B20) = iωc0(cos k0L1 − 1)q̂,

iωρHc0(cos k0L1 − 1)B10 − iωρHc0(1− cos k0L1)B20 +Θq̂ = 0,

with Θ given in (2.40). We now consider three separate sub-cases of this case.

A.1.1 Sub-case A: cos k0L1 = cos k0L2 = 1

Here both m and m′ are even, and under these conditions the three equations above
reduce to

B10 = B20, and q̂ = 0.

Hence, this results in free-sloshing in a stationary vessel with symmetric free-surface
profiles in each region, as shown for an example in figure 11(a).

A.1.2 Sub-case B: cos k0L1 = cos k0L2 = −1

Here both m and m′ are odd and under these conditions the three equations above reduce
to

β(B10 −B20) = −2c0q̂, and 2iωρHc0(−B10 +B20) + Θq̂ = 0.

These equations can be combined together into[
4iωρHc20

β
+Θ

]
q̂ = 0.

The bracketed quantity is not zero for all parameter values, hence again q̂ = 0 and
B10 = B20 is arbitrary. These are again free-sloshing modes in a stationary vessel, but
this time the modes are anti-symmetric in each region. Hence each region generates an
equal and opposite force on the vessel walls during its motion, which keeps the vessel
stationary. An example of these anti-symmetric modes are plotted in figure 11(b).

A.1.3 Sub-case cos k0L1 = 1 and cos k0L2 = −1 (or vice versa)

In this case either m or m′ is even, while the other is odd, and under these conditions the
three equations above reduce to

−2iωc0q̂ = 0,

−iωβ(B10 +B20) = 0,

2iωρHc0B20 +Θq̂ = 0.

Thus q̂ = 0 from the first equation, and so the third equation gives B20 = 0, and finally
B10 = 0 from the second equation. Hence the result is the trivial case. This is consistent
with the previous results, because in this case the mode in one region is symmetric, i.e.
produces no lateral force on the vessel, while in the second region the free-surface is ant-
symmetric and is producing a lateral force on the vessel. Hence this scenario cannot occur.
An example of this case is plotted in figure 11(c).
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Figure 11: Plot of the free-surface elevation h(x, 0) for the three sub-cases (a) sub-case A
with (L1, L2) = (0.4, 0.6), (b) sub-case B with (L1, L2) = (0.375, 0.625) and (c) sub-case
C with (L1, L2) = (0.4, 0.6). In each case H = 0.1 and ϵ = 0.01 and the vertical dotted
line represents the baffle. Here each mode is a neutral mode with s ∈ R, i.e. a zero decay
rate. The fluid frequencies in each section are the same, such that the fluid waves meet
at the baffle so no fluid passes through the baffle. Hence the fluid heights are continuous
across the baffle in (a) and (b).

A.2 Case 2: ω = − ik0
β(cot k0L1+cot k0L2)

In this case we introduce the new constants

Dj0 =
Bj0

cot k0L1 + cot k0L2

, P =
q̂

(cot k0L1 + cot k0L2)2
,

and then the governing equations can be written as
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k0 sin k0L1D10 + k0 sin k0L2D20 = −k0c0
β

(cos k0L2 − cos k0L1)P,

k0 sin k0L1D10 + k0 sin k0L2D20 =
k0c0 sin k0L2

β sin k0L1

[(cos k0L1 − 1)(cot k0L1 + cot k0L2)

+ sin k0L1 + sin k0L2]P,

k0ρHc0 [(cos k0L1 − 1)D10 + (1− cos k0L2)D20] + (cot k0L1 + cot k0L2)
2ΘP = 0.

Eliminating the Dj0 constants from the first 2 equations leads to[
sin k0L2

sin k0L1

[(cos k0L1 − 1)(cot k0L1 + cot k0L2) + sin k0L1 + sin k0L2]

+ cos k0L2 − cos k0L1

]
P = 0,

which implies that P = 0, as the square bracket is not zero for all parameter values. The
resulting equations then lead to D10 = D20 = 0, i.e. the trivial solution for this value of
ω.

B Asymptotic Solutions for the Non-Dimensional Fre-

quency, s

In this appendix we calculate the asymptotic form of the non-dimensional frequency s for
the case γ ∈ R in the limits γ ≪ 1 and γ ≫ 1.

B.1 Asymptotic Frequencies in γ ≪ 1 Limit

We can identify the form of the complex sloshing frequency s in the limit as γ → 0 by
forming an asymptotic expansion of all variables which depend on s, in the form

s = s0 + γs1 +O(γ2),

α0 = α00 + γα01 +O(γ2),

αn = αn0 + γαn1 +O(γ2),

c20 = c200 + γc201 +O(γ2),

c2n = c2n0 + γc2n1 +O(γ2),

Θ0 = Θ00 + γΘ01 +O(γ2),

Θ1 = Θ10 + γΘ11 +O(γ2),

Θ2 = Θ20 + γΘ21 +O(γ2).

(2.51)

The process documented below could be extended to achieve higher order accuracy by
computing more terms in the asymptotic series for s. However, for the purposes of this
paper there are no clear benefits to computing past the first two terms, and hence we stop
our expansions at this point.
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By considering the eigenvalue problems for α0 and αn in (2.45), we can deduce expres-
sions which link α00 to s0 and α01 to s1 etc. Inserting the expansions (2.51) into the first
equation of (2.45) gives

O(1) : α00 tanhα00δ − 4δs20 = 0,

O(γ) : α01 tanhα00δ + α00α01 sech
2 α00δ − 8δs0s1 = 0.

(2.52)

Hence at leading order this is just the usual eigenvalue problem which needs to be solved
given an s0 value, while the second equation shows that α01 and s1 are linked via the
linear expression,

α01 =
8δα00s0

(α2
00 + 4δs20 − 16δ2s40)

s1.

Similarly for the evanescent modes, the second equation of (2.45) becomes

O(1) : αn0 tanαn0δ + 4δs20 = 0,

O(γ) : αn1 tanαn0δ + αn0αn1 sec
2 α00δ + 8δs0s1 = 0,

(2.53)

and so at O(γ)

αn1 = − 8δαn0s0
(α2

n0 − 4δs20 + 16δ2s40)
s1.

By the same process the coefficients in (2.32) gives

O(1) : c200 =
4 sinh2(α00δ)

α00δ(2α00δ + sinh 2α00δ)
,

O(γ) : c201 = −c
2
00α01

α00

(
1− 2δα00 cothα00δ + δ2α2

00c
2
00 coth

2 α00δ
)
,

O(1) : c2n0 =
4 sin2 αn0δ

αn0δ(2αn0δ + sin 2αn0δ)
,

O(γ) : c2n1 = −c
2
n0αn1

αn0

(
1− 2δαn0 cotαn0δ + δ2α2

n0c
2
n0 cot

2 αn0δ
)
.

(2.54)

Therefore, substituting these expansions into the characteristic equation gives,

α00 sinα00µ sinα00(1− µ)

[
2s20c

2
00

(
tan

1

2
α00µ+ tan

1

2
α00(1− µ)

)
− α00Θ00

]
= 0.

This characteristic equation is exactly that given in [7] for the case of two separate com-
partments with equal mean fluid depths. Solving this characteristic equation gives the
leading order value of the frequency s0 which is purely real. The next order correction
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term comes from the O(γ) part of the characteristic equation which states,

4α00s0c
2
00 sinα00µ sinα00(1− µ)

(
tan

1

2
α00µ+ tan

1

2
α00(1− µ)

)
s1

+

[
2α00s

2
0 sinα00µ sinα00(1− µ)

(
µ

2
sec2

1

2
α00µ+

(1− µ)

2
sec2

1

2
α00(1− µ)

)
+2

(
α00s

2
0(1− µ) sinα00µ cosα00(1− µ)

+(α00s
2
0µ cosα00µ+ s20 sinα00µ) sinα00(1− µ)

)(
tan

1

2
α00µ+ tan

1

2
α00(1− µ)

)]
c200α01

−(α2
00(1− µ) sinα00µ cosα00(1− µ) + (α2

00µ cosα00µ+ 2α00 sinα00µ) sinα00(1− µ))Θ00α01

+2α00s
2
0c

2
01 sinα00µ sinα00(1− µ)

(
tan

1

2
α00µ+ tan

1

2
α00(1− µ)

)
−2is30c

2
00(1− cosα00) + iα00s0Θ00 sinα00 − (Θ01 − iΘ20)α

2
00 sinα00µ sinα00(1− µ) = 0,

where

Θ00 = G−Rs20 − 2s20

∞∑
n=1

c2n0
αn0

(
tanh

1

2
αn0µ+ tanh

1

2
αn0(1− µ)

)
,

Θ01 = −2Rs0s1

−
∞∑
n=1

[
2

α2
n0

(
s20αn0c

2
n1 + 2s0s1αn0c

2
n0 − s20c

2
n0αn0

)(
tanh

1

2
αn0µ+ tanh

1

2
αn0(1− µ)

)
+
2s20c

2
n0αn1

αn0

(
µ

2
sech2

1

2
αn0µ+

(1− µ)

2
sech2

1

2
αn0(1− µ)

)]
,

Θ20 = −s30

∞∑
n=1

c2n0
αn0

(
tanh

1

2
αn0µ+ tanh

1

2
αn0(1− µ)

)2

.

This equation is solved to give s1, using (2.52)-(2.54) to eliminate these variables in favour
of s1. The value for s1 is purely imaginary. Results of this approximation are given in
figure 4.

B.2 Asymptotic Frequencies in γ ≫ 1 Limit

The mechanism for calculating the asymptotic frequencies for γ ≫ 1 follows a similar
calculation as for γ ≪ 1 in §B.1. The difference being that we introduce the small
parameter ν = γ−1 and expand as before. Therefore, this time we write

s = s0 + νs1 +O(ν2),

α0 = α00 + να01 +O(ν2),

αn = αn0 + ναn1 +O(ν2),

c20 = c200 + νc201 +O(ν2),

c2n = c2n0 + νc2n1 +O(ν2),

and the values of α00, α01, αn0 and αn1, along with c200, c
2
01, c

2
n0 and c

2
n1, are again linked to

s0 and s1 via equations (2.52)-(2.54). The significant difference in this derivation of the
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asymptotic frequencies, is here we find that

Θ0 = Θ̃00 + νΘ̃01 +O(ν2),

Θ1 = ν2Θ̃10 + ν3Θ̃11 +O(ν4),

Θ2 = ν2Θ̃20 +O(ν3).

Thus the leading order characteristic equation is

s0 sinα00

[
α00(Θ̃00 + Θ̃10)− 2s20c

2
00 tanα00

]
= 0,

which is simply the one compartment form of the characteristic equation given by [35]
and again is purely real. At O(ν) the correction term s1, which again is purely imaginary,
is found by solving[

−6is20c
2
00(1− cosα00) + iα00 sinα00(Θ̃00 + Θ̃10)

]
s1

+
[
−2is30c

2
00 sinα00 + is0(sinα00 + α00 cosα00)(Θ̃00 + Θ̃10)

]
α01

+2α00s
2
0c

2
00 sinα00µ sinα00(1− µ)

(
tan

1

2
α00µ+ tan

1

2
α00(1− µ)

)
− 2is30c

2
01(1− cosα00)

−α2
00 sinα00µ sinα00(1− µ)(Θ̃00 + Θ̃10) + is0α00 sinα00(Θ̃01 + Θ̃11 − iΘ̃20) = 0,

where

Θ̃00 = G−Rs20,

Θ̃01 = −2Rs0s1,

Θ̃20 = −s0
∞∑
n=1

c2n0αn0

(
tanh 1

2
αn0µ+ tanh 1

2
αn0(1− µ)

)2
(cothαn0µ+ cothαn0(1− µ))2

,

Θ̃10 = −2s20

∞∑
n=1

c2n0
αn0

tanh
1

2
αn0,

Θ̃11 = −
∞∑
n=1

[
2s0
α2
n0

(s0c
2
n1αn0 + 2s1c

2
n0αn0 − s0c

2
n0αn1) tanh

1

2
αn0 +

s20c
2
n0αn1

αn0

sech2 1

2
αn1

]
.

Results of this approximation are given in figure 4.
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