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– Abstract –

The interaction of two line vortices of differing strengths in the presence of a
circular cylinder is considered. An explicit criteria is derived, a function of
the vortex strengths (including strengths of opposite sign) and the cylinder ra-
dius, which separates different behaviours of the system. If the initial position
of the vortices satisfy this criteria, they will undergo a periodic leapfrogging
motion as they rotate around the cylinder, otherwise the vortices still interact
weakly with one another except without leapfrogging. This is in contrast to
the planar wall case where if no periodic leapfrogging occurs then the vortices
move apart and do not interact with each other. Numerical results for initial
vortex positions which do, and do not satisfy this criteria are presented to
demonstrate the different motions available, as well as the robustness of the
criteria.
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1 Introduction

In an inviscid fluid, examining the motion and interaction of line vortices in the horizontal
plane is a rich and well studied problem, reaching all the way back to the work of Helmholtz
[1] (translated by [2]). Since then there have been notable studies on the so-called N -

vortex problem, due to the fact that the governing equations have a simple structure, yet
the possible motions which they contain is vast. For N = 1, 2 and 3 vortices the system
is integrable and so the system exhibits predictable dynamics. For example, for N = 2
the vortices can rotate about a point or travel along a common axis as pair, if the absolute
values of their strengths are equal, while for N = 3 the array of motions is richer, but
still contains both bounded and unbounded motions [3, 4, 5]. For N ≥ 4 the system is
typically chaotic, unless some prescribed symmetry is imposed on the vortices. For more
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information on the historical aspect of the N -vortex problem the reader is referred to [6]
and [5] and the references therein.

The N = 4 planar vortex case, where the vortices come in pairs of equal and opposite
strength either side of a common axis, is often used as a simple model to study the
interaction of three-dimensional vortex rings. The interaction of two vortex rings has
received experimental, numerical and theoretical treatment over the years, most notably
because the rings can undergo a leapfrogging motion [7, 8, 9, 10, 11, 12, 13]. This is when
the trailing ring shrinks and accelerates, while the leading ring expands and decelerates
causing the faster trailing ring to pass through the leading ring. This process then repeats
periodically. The planar N = 4 line vortex model also demonstrates this behaviour and
is typically studied using four vortices with equal absolute strengths [14, 15, 16, 17, 5].
The case of leapfrogging for different strength vortex pairs was considered in [18], who
identified a full description of the possible motions of two vortex rings for a wide range
of initial conditions, as well as in [19] who derived an explicit criteria for the generation
of leapfrogging in the planar problem. This criteria is a function of the vortex strength
ratio and the initial separation of the vortices.

Using the method of images [20], the N = 4 planar vortex problem above with this
symmetry also represents the flow for two interacting vortices next to an impermeable
barrier, which is of interest in this work. In the world’s oceans, vortices typically have
long lifetimes and thus can propagate large distances via background currents or via the
planetary vorticity gradient [21]. In doing so many will encounter topological barriers
including coastlines [22, 23, 24] or seamounts [25, 26], and as these vortices transport
significant amounts of heat, momentum, mass and salt in the world’s oceans, understand-
ing their motion close to, and interaction with, these barriers is important. In this work
we investigate the interaction of two vortices with the coastline of a circular island, and
in particular we identify a criteria for the periodic leapfrogging motion of these vortices,
using an approach similar to [19].

We consider a simplified model of the full vortex/island interaction problem consisting
of a pair of line vortices in an inviscid, irrotational fluid external to a circular cylinder.
The results in this simplified model will help to inform results from simulations of the
fully viscous Navier-Stokes equations which address the full problem. The case of a single
line vortex external to a circular cylinder is straightforward and exhibits circular motion
at a fixed distance from the barrier [27]. Here the vortex motion is in fact due to the
induced velocity of two image vortices inside the cylinder. In this work we consider two
vortices of different strengths, Γ1 and Γ2 (including cases of opposite sign) and find that
leapfrogging motion is possible for all combinations of 0 < |Γ1/Γ2| ≤ 1, with Γ1+Γ2 6= 0,
for all cylinder radii, a , but in many cases it is required that the vortices be initialized
very close to each other. Leapfrogging does not occur for the case Γ1 + Γ2 = 0 as the
vortices cannot swap their radial order with respect to the cylinder.

The current paper is laid out as follows. In 2.1 we formulate the governing ODEs from
the complex potential and confirm the system is Hamiltonian, while in 2.2 we derive the
criteria for the existence of leapfrogging vortices. In 3 we illustrate the leapfrogging mo-
tion by integrating the governing ODEs, and demonstrate the robustness of the existence
criteria. Conclusions and future extensions are discussed in 4.
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2 Formulation

2.1 Derivation of Governing Equations

We consider two line vortices in an inviscid, irrotational fluid which fills the two-dimensional
z -plane exterior to an impermeable circular cylinder of radius a , centred on the origin.
The vortices, labelled vortex 1 and vortex 2, have strengths Γj and lie at z = zj for
j = 1, 2 with |zj| > a . A schematic diagram for the problem setup can be found in figure
1, where we write z = reiθ with (r, θ) the usual plane polar coordinates and i =

√
−1.

We consider the situation where 0 < |Γ2| ≤ Γ1 , excluding the case Γ1 +Γ2 = 0, and note

(ρ2(t), α2(t))

x

y

r

a

θ
⋄

⋄

(ρ1(t), α1(t))

Figure 1: Schematic setup of two line vortices outside of a circular cylinder of radius a .
The vortices have strengths Γj and are located at the polar coordinates (ρj(t), αj(t)) for
j = 1, 2.

that the case Γ1 < |Γ2| leads to identical results.
The complex potential for the flow around the cylinder can be written down using the

Milne-Thomson circle theorem [27] as

w(z) = − iΓ1

2π
log(z−z1)−

iΓ2

2π
log(z−z2)+

iΓ1

2π
log

(
zz1 − a2

z

)
+
iΓ2

2π
log

(
zz2 − a2

z

)
, (1)

where the overbar signifies the complex conjugate, and we have neglected any additive
constant without loss of generality. Thus by noting that

iΓj

2π
log

(
zzj − a2

z

)
=

iΓj

2π

[
log

(
z − a2

zj

)
− log(z) + log(zj)

]
,

for j = 1, 2 the flow external to the cylinder actually consists of a flow generated by the
two physical vortices together with four additional image vortices which lie in |z| < a .
By writing the time-dependent position of the physical vortices as

zj(t) = ρj(t)e
iαj(t),

and noting that the streamfunction for the flow is given by ψ(r, θ; ρ1, α1, ρ2, α2) = Im(w)
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then

ψ(r, θ) = −Γ1

4π
log

(
r2 + ρ21 − 2rρ1 cos(θ − α1)

)
− Γ2

4π
log

(
r2 + ρ22 − 2rρ2 cos(θ − α2)

)

+
Γ1

4π
log

(
r2ρ21 + a4 − 2rρ1a

2 cos(θ − α1)
)
+

Γ2

4π
log

(
r2ρ22 + a4 − 2rρ2a

2 cos(θ − α2)
)

−(Γ1 + Γ2)

2π
log(r). (2)

The velocity of vortex 1 can then be found by calculating the induced velocity at
z = z1 = ρ1e

iα1 due to the other physical vortex and the image vortices. Thus the
governing ordinary differential equations (ODEs) for the motion of vortex 1 are

dρ1
dt

=
1

r

∂ψ

∂θ

∣∣∣∣
z=z1

= −Γ2

2π

ρ2 sin(α1 − α2)

[ρ21 + ρ22 − 2ρ1ρ2 cos(α1 − α2)]

+
Γ2

2π

a2ρ2 sin(α1 − α2)

[ρ21ρ
2
2 + a4 − 2ρ1ρ2a2 cos(α1 − α2)]

, (3)

ρ1
dα1

dt
= − ∂ψ

∂r

∣∣∣∣
z=z1

=
Γ2

2π

ρ1 − ρ2 cos(α1 − α2)

[ρ21 + ρ22 − 2ρ1ρ2 cos(α1 − α2)]

−Γ2

2π

ρ2(ρ1ρ2 − a2 cos(α1 − α2))

[ρ21ρ
2
2 + a4 − 2ρ1ρ2a2 cos(α1 − α2)]

−Γ1

2π

ρ1
[ρ21 − a2]

+
(Γ1 + Γ2)

2πρ1
. (4)

Similarly the governing equations for vortex 2 can be shown to be

dρ2
dt

= −Γ1

2π

ρ1 sin(α2 − α1)

[ρ21 + ρ22 − 2ρ1ρ2 cos(α1 − α2)]

+
Γ1

2π

a2ρ1 sin(α2 − α1)

[ρ21ρ
2
2 + a4 − 2ρ1ρ2a2 cos(α1 − α2)]

, (5)

ρ2
dα2

dt
=

Γ1

2π

ρ2 − ρ1 cos(α2 − α1)

[ρ21 + ρ22 − 2ρ1ρ2 cos(α1 − α2)]

−Γ1

2π

ρ1(ρ1ρ2 − a2 cos(α1 − α2))

[ρ21ρ
2
2 + a4 − 2ρ1ρ2a2 cos(α1 − α2)]

−Γ2

2π

ρ2
[ρ22 − a2]

+
(Γ1 + Γ2)

2πρ2
. (6)

In the limit as a → ∞ , with αj = xj/a and ρj = a + yj for j = 1, 2, equations (3)-(6)
reduce to the equivalent planar wall equations, e.g. (14)-(17) in [19].

The above system is Hamiltonian with respect to the conjugate variables

(qj, pj) = (Γjρj, ρjαj), for j = 1, 2,

with the Hamiltonian given by

H(ρ1, α1, ρ2, α2; a) =
1

4π
log

[
ρ
−2Γ1(Γ1+Γ2)
1 ρ

−2Γ2(Γ1+Γ2)
2 (ρ21 − a2)Γ

2

1(ρ22 − a2)Γ
2

2

[
ρ21ρ

2
2 + a4 − 2ρ1ρ2a

2 cos(α1 − α2)

ρ21 + ρ22 − 2ρ1ρ2 cos(α1 − α2)

]Γ1Γ2

]
. (7)
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Note, that here Hamilton’s equations

(
.
qj,

.
pj) =

(
∂H

∂pj
,−∂H

∂qj

)
,

become

(Γj
.
ρj,

.
ρjαj) =

(
1

ρj

∂H

∂αj

,−Γ−1
j

∂H

∂ρj
+

αj

Γjρj

∂H

∂αj

)
.

From (3) and (5) we observe that the combination Γ1ρ1∗(3)+Γ2ρ2∗(5) leads to

Γ1ρ1
dρ1
dt

+ Γ2ρ2
dρ2
dt

= 0,

and hence by integrating with respect to t , we can define the conserved quantity

ρ20 =
Γ1ρ

2
1 + Γ2ρ

2
2

Γ1 + Γ2

, (8)

which is the absolute value of the momentum of the flow, scaled by the total circulation
[28]. This definition is valid as we have excluded the case when Γ1 + Γ2 = 0. In this
case the conserved quantity (8) becomes ρ21 − ρ22 , and because this is conserved it cannot
change sign during the motion of the vortices, and hence the vortices cannot change their
radial ordering with respect to the cylinder surface. Thus no leapfrogging is observed,
and the vortices either just move around the cylinder in near circular orbits, or propagate
away from the cylinder as a vortex pair.

Using definition (8), we define the two dimensionless relative coordinates

R(t) =
ρ22 − ρ21
ρ20

and A(t) = α2 − α1, (9)

such that
ρ1 = ρ0 [1− g2R]

1/2 and ρ2 = ρ0 [1 + g1R]
1/2 , (10)

where

g1 =
Γ1

Γ1 + Γ2

and g2 =
Γ2

Γ1 + Γ2

.

The Hamiltonian of the system (7) is the kinetic energy of the system, which is con-
served, thus we can set (7) equal to a constant such that

1

4π
log

[
ρ
−2Γ1(Γ1+Γ2)
1 ρ

−2Γ2(Γ1+Γ2)
2 (ρ21 − a2)Γ

2

1(ρ22 − a2)Γ
2

2

[
ρ21ρ

2
2 + a4 − 2ρ1ρ2a

2 cos(α1 − α2)

ρ21 + ρ22 − 2ρ1ρ2 cos(α1 − α2)

]Γ1Γ2

]
=

Γ1Γ2

4π
log

C

ρ20
,

where C is an unspecified constant. Writing the above expression in terms of (9) and
(10), it can be expressed as

[1− g2R]
−1/g2 [1 + g1R]

−1/g1 [1− g2R− d2]g1/g2 [1 + g1R− d2]g2/g1[
[1− g2R][1 + g1R] + d4 − 2d2[1− g2R]

1/2[1 + g1R]
1/2 cos(A)

2 + (g1 − g2)R− 2[1− g2R]1/2[1 + g1R]1/2 cos(A)

]
= C, (11)
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where d = a/ρ0 is the non-dimensional cylinder radius. Equation (11) describes solution
trajectories in the (A,R)-phase plane for different values of C . For the case of two
vortices next to an impermeable barrier orientated with the x−axis, equivalent to the
problem studied by [19], it was found that the phase-plane includes both closed and open
trajectories. The closed trajectories signified periodic solutions where the vortices leapfrog
past one another, while the open trajectories signified solutions where the vortices either
never pass one another, or only pass each other once, i.e. non-leapfrogging motions. The
two different solution types are separated by a separatrix, which corresponds to a critical
value of the constant C , namely Ccrit , which leads to a condition for leapfrogging vortices.
By leapfrogging, we are referring to the scenario where both vortices travel in the same
direction around the cylinder, the trailing vortex is pushed closer to the cylinder by the
leading vortex, which in turn forces the leading vortex away from the cylinder. This
effect causes the leading vortex to slow down and the trailing vortex to speed up, which
allows the trailing vortex to overtake the leading vortex, passing between the vortex and
the cylinder. This process then continues to repeat periodically. The criteria for this
leapfrogging motion is derived in the next section.

2.2 Criteria for leapfrogging vortices

In [19] the separatrix in the solution phase-plane occurs at the point of maximum sepa-
ration of the vortices for the case when both vortices have strengths of the same sign. In
the current work we also consider this case, as well as the case when the vortices have
strengths of opposite sign. Investigating the solution trajectories in the (A,R)-plane by
directly integrating (3)-(6), we find the cases for µ = Γ2/Γ1 = g2/g1 > 0 and µ < 0 have
different structures, similar to what has been observed for vortex rings [18]. We consider
these cases here.

For 0 < µ ≤ 1 the separatrix occurs at the maximum azimuthal separation of the
vortices, namely when A = π , and thus we can define the function

F+(R; d, g1, g2) := [1− g2R]
−1/g2 [1 + g1R]

−1/g1(1− g2R− d2)g1/g2(1 + g1R− d2)g2/g1(
[1− g2R][1 + g1R] + d4 + 2d2[1− g2R]

1/2[1 + g1R]
1/2

2 + (g1 − g2)R + 2[1− g2R]1/2[1 + g1R]1/2

)
. (12)

The function F+(R; d, g1, g2) is essentially the LHS of (11) and thus where F+(R) = C
gives real values, this corresponds to a phase plane trajectory in the (A,R)-plane. Note,
however that for our purposes the function F+(R; d, g1, g2) is not valid for all values of
R , and in fact for the vortices to lie outside the cylinder (ρ1,2 > a) we require from (10)
that

d2 − 1

g1
< R <

1− d2

g2
. (13)

Figures 2(a) and 2(b) plot F+(R) for µ = 0.15, 0.5, 0.8 for d = 0.6 and d = 0.2
respectively. These results show that the function F+(R) has a maximum value at R =
Rmax in the range (13), where F+(Rmax) = Ccrit . Unlike for the planar wall case, there is
no closed form for the value of Ccrit and hence this value needs to be solved for numerically
using Newton iterations. A contour plot of Ccrit(µ, d) is given in figure 2(c), and shows
that for a fixed d . 0.5, increasing µ from µ ≈ 0 leads to Ccrit increasing to some
maximum value before decreasing again towards µ = 1. For fixed d & 0.5 increasing µ
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Figure 2: (colour online) Plot of F+(R) for µ =
0.15 (solid curve), 0.5 (dashed curve), 0.8 (dot-dashed curve) for (a) d = 0.6 and
(b) d = 0.2. Panel (c) plots Ccrit(µ, d) .

just increases the value of Ccrit up to its µ = 1 value, at a relatively slow rate. Note,
that Ccrit(µ, d) for µ ≥ 1 are just Ccrit(µ

−1, d) where 0 < µ ≤ 1.
Note, in figure 2(b) the dot-dashed curve, µ = 0.8, has two distinct maximum values

in the range (13), with the second maximum having C
(2)
max < Ccrit . Thus in this case the

(A,R)-phase plane will have two separatrices along the line A = π . However, we will
show in 3 that it is only for values of C > Ccrit that we have leapfrogging motions, while
for C

(2)
max < C < Ccrit we have another non-leapfrogging solution.

For the case −1 < µ < 0, a numerical investigation of the (A,R)-plane now shows
the separatrix occurs at A = 0 and thus we define

F−(R; d, g1, g2) := [1− g2R]
−1/g2 [1 + g1R]

−1/g1(1− g2R− d2)g1/g2(1 + g1R− d2)g2/g1(
[1− g2R][1 + g1R] + d4 − 2d2[1− g2R]

1/2[1 + g1R]
1/2

2 + (g1 − g2)R− 2[1− g2R]1/2[1 + g1R]1/2

)
, (14)

which by requiring ρ1,2 > 0 in (10) with g2 < 0, leads to the validity condition

d2 − 1

g1
< R.
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Figure 3: (colour online) Plot of F−(R) for µ = −0.15 (solid curve), −
0.5 (dashed curve), − 0.8 (dot-dashed curve) for (a) d = 0.6 and (b) d = 0.2. Panel (c)
plots log(Ccrit(µ, d)) , and note the scale change in Ccrit values compared to figure 2.

In figures 3(a) and 3(b) we plot F−(R) for µ = −0.15, − 0.5, − 0.8 for d = 0.6 and
d = 0.2 respectively. In this case as µ < 0, F− → ∞ as R → (d2 − 1)/g1 and R → 0.
Beyond R = 0, F− → 0 as R → ∞ (not shown). The key thing in this case is that
F− has a minimum at R = Rmin ∈ ((d2 − 1)/g1, 0). Thus there are no real values of C
satisfying C < Ccrit = F−(Rmin) , which defines the critical value. We again expect to
find periodic leapfrogging motions for C > Ccrit , except for values of R < Rmin where
there is no leapfogging. In figure 3(c) we plot log(Ccrit) , as the values of Ccrit can become
very large in this case, and also we find that Ccrit for a fixed d has a minimum value for
µ ∈ (−1, 0).

When C = Ccrit in (11) this equation can be considered as giving the maximal ini-
tial spacing of the vortices, in the azimuthal direction, Amax , for a given initial radial
displacement R(0) in the form

cos(Amax) =
γ(g1, g2, d, R) ([1− g2R][1 + g1R] + d4)− Ccrit (2 + (g1 − g2)R)

2[1− g2R]1/2[1 + g1R]1/2 (γ(g1, g2, d, R)d2 − Ccrit)
, (15)

where

γ(g1, g2, d, R) = [1− g2R]
−1/g2 [1 + g1R]

−1/g1 [1− g2R− d2]g1/g2 [1 + g1R− d2]g2/g1 .

8



Thus we have leapfrogging when the initial azimuthal separation satisfies −Amax < A(0) <
Amax . Note that equally we could have considered (11) with C = Ccrit as giving the max-
imal radial spacing for a given initial azimuthal spacing. Contour plots of Amax(R, d)/π
are given in figure 4. These figures show that for fixed (R, d) values, the value of Amax

(a)

d

R (b)

d

R

(c)

d

R (d)

d

R

Figure 4: (colour online) Contour plots of Amax(R, d)/π for (a) µ = 0.8, (b) µ = 0.15, (c)
µ = −0.15 and (d) µ = −0.8. Note, in the white regions of these figures no leapfrogging
is possible.

typically reduces as µ reduces, i.e. as the strength of the two vortices diverge. For
0 < µ ≤ 1 in panels (a) and (b), the maximum value of Amax = π (because the separatrix
lies at A = π ) occurs when R < 0, i.e. when the stronger vortex (vortex 1) is furthest
from the cylinder. For −1 < µ < 0 the maximum value of Amax is not π and figures 4(c)
and 4(d) show the value of Amax is generally smaller, showing that leapfrogging is only
possible if the vortices are initially close together.

In 3 we demonstrate the existence of this leapfrogging region by examining the tra-
jectories of the two vortices with initial separations either side of this critical Amax value.
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3 Vortex Trajectory Results

Here we demonstrate the leapfrogging phenomena of two line vortices external to a circular
cylinder by examining their trajectories for distinct values of µ = g2/g1 and d . We begin
by considering contour plots of the (A/π,R)-phase plane in figure 5. Here we consider

(a)

R

A/π

12

3

(b)

R

A/π

4

5
6

7

(c)

R

A/π (d)

R

A/π

(e)

8

10

R

A/π

9

(f)

11

R

A/π

12
13

Figure 5: (colour online) Contour plot of C(A/π,R) for (a) (µ, d) = (0.8, 0.6), (b)
(0.8, 0.2), (c) (0.15, 0.6), (d) (0.15, 0.2), (e) (−0.15, 0.6) and (f) (−0.15, 0.2). The thick
black contour signifies the value of Ccrit in each case, and in panels (a), (b), (e) and (f)
the thick numbered contours represent those results presented in figures 6 to 9.
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the six combinations of results with µ = 0.8, 0.15 and −0.15 with d = 0.6 and 0.2. The
results indicate that smaller cylinders typically have a larger region in the phase-plane
where leapfrogging occurs, and thus the phase-planes for d = 0.6 are narrower in the A/π
direction for a given value of R (except around the separatrix). Leapfrogging occurs for
contours inside the Ccrit contour (thick black contour), i.e. C > Ccrit , and these contours
are traversed clockwise for µ > 0 (with Γ1,2 > 0) and for µ < 0 (with Γ1 > 0). Close
to (0, 0) the period of the leapfrogging motion tends to zero, while at the separatrix the
period tends to infinity.

The thicker contours (red online) in figures 5(a), 5(b), 5(e) and 5(f) numbered 1-
13 denote cases examined below by numerically integrating the governing ODEs (3)-(6).
The ODEs are integrated forward in time using a 4th order Runge-Kutta scheme from an
initial condition which lies on one of the numbered contours with a time-step ∆t = 10−3 .
Note, the timescale of the simulations is governed by the quantity Γ1/a

2 in this work.
This is equivalent to non-dimensionalizing equations (3)-(6) using the non-dimensional
time τ = Γ1

a2
t . In the absence of the second vortex, vortex 1 should complete an orbit of

the cylinder every 4π2a2

Γ1ρ21(ρ
2

1
−a2)

seconds. The respective parameters and initial conditions

are given in table 1, while in all the cases presented the initial radial separation of the
vortices is taken as R(0) = 0.5.

Contour Trajectory Γ2 d a ρ2(0) α2(0) Amax C Ccrit

number figures
1 6(a,b) 0.8 0.6 0.6803 1.2817 0.4π 0.5246π 0.2224 0.1895
2 6(c,d) 0.8 0.6 0.6803 1.2817 0.5π 0.5246π 0.1941 0.1895
3 6(e,f) 0.8 0.6 0.6803 1.2817 0.53π 0.5246π 0.1885 0.1895
4 8(a,b) 0.8 0.2 0.2268 1.2817 0.4π 0.6650π 0.6193 0.3123
5 8(c,d) 0.8 0.2 0.2268 1.2817 0.65π 0.6650π 0.3200 0.3123
6 8(e,f) 0.8 0.2 0.2268 1.2817 0.67π 0.6650π 0.3098 0.3123
7 8(g,h) 0.8 0.2 0.2268 1.2817 0.98π 0.6650π 0.2440 0.3123
8 — -0.15 0.6 0.5752 1.2081 0.05π 0.0838π 101.6328 59.9648
9 — -0.15 0.6 0.5752 1.2081 0.08π 0.0838π 63.4966 59.9648
10 — -0.15 0.6 0.5752 1.2081 0.09π 0.0838π 54.8160 59.9648
11 — -0.15 0.2 0.1917 1.2081 0.1π 0.1962π 6.9117 2.3084
12 — -0.15 0.2 0.1917 1.2081 0.19π 0.1962π 2.4410 2.3084
13 — -0.15 0.2 0.1917 1.2081 0.20π 0.1962π 2.2325 2.3084

Table 1: Parameter values and initial conditions used when integrating the ODEs (3)-(6)
for the trajectories in figures 6-9. In each case R(0) = 0.5, ρ1(0) = 1, α1(0) = 0 and
Γ1 = 1.

In figure 6 we plot trajectories of the vortices in the (r, θ)- and (x, y)-planes for the
case d = 0.6 and µ = 0.8, which has Amax = 0.5246π with R(0) = 0.5. In figures 6(a)
and 6(b) we consider the case A(0) = 0.4π < Amax and hence we expect, and observe,
leapfrogging of the vortices, as seen in panel (a). Note, we choose to plot the absolute
angles α1(t) and α2(t) , not their principal values, as this allows for less congested figures
in which the leapfrogging motion is clearer. In panel (a) we observe that both vortices
are travelling clockwise around the cylinder and we see that the vortices regularly cross
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Figure 6: (colour online) Plot of (a,c,e) (θ, r)−plane and (b,d,f) (x, y)−plane for µ = 0.8,
d = 0.6, and the inital vortex separation conditions R(0) = 0.5 and (a,b) A(0) = 0.4π ,
(c,d) A(0) = 0.5π and (e,f) A(0) = 0.53π . These 3 cases correspond to the paths
numbered 1-3 respectively in the phase-plane figure 5(a). In each panel the darker line
(blue) represents vortex 1 while the lighter line (red) represents vortex 2.

paths, with the outer vortex forced toward the cylinder in order to speed up and overtake
the inner vortex. In figure 6(b) we see the vortex trajectories in the physical (x, y)-plane
which shows that when the vortices are forced outward to larger radii they reverse their
direction for a short period of time creating lobe like structures. In figures 6(c) and 6(d)
A(0) = 0.5π which is still less than Amax , and so we again have leapfrogging of the
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vortices but with a larger period of the motion, and in figure 6(c) the direction reversal of
the vortices is more obvious. In figures 6(e) and 6(f) we consider an initial separation of
the vortices with A(0) = 0.53π > Amax , and hence we do not expect to see leapfrogging
in this case, and in fact the vortices travel in opposite directions around the cylinder
(vortex 1, clockwise and vortex 2, counter-clockwise). The vortices do still interact with
one another when their principal angles become comparable, but they do not regularly
switch positions with each another. Here in figure 6(f) we do still see some direction
reversal for vortex 1, but not for vortex 2 in this case.
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Figure 7: Plot of αj(t) for vortex j = 1 (dark curve, blue), 2 (light curve, red) for µ =
0.8 and (a) d = 0.6 and (b) d = 0.2. In each panel the numbering of the results
corresponds to that in figures 5(a) and 5(b) respectively, and the results are separated by
the constant 20 for clarity.

The leapfrogging of the vortices is not always clear in the physical-plane as the trajec-
tories soon clutter the figure, but it is more readily visible by plotting the absolute angles
of the vortices, α1,2 as a function of time. Figure 7(a) plots these quantities for cases 1-3
in figure 6. For cases 1 and 2, leapfrogging can be observed, while for case 3, there is no
leapfrogging as the vortices are travelling in opposite directions, as per figure 6(e).

In figure 8 we consider vortex trajectories as in figure 6, but in this case we consider a
smaller cylinder, with d = 0.2, which with R(0) = 0.5 gives Amax = 0.6650π . The results
in figures 8(a) and 8(c), A = 0.4π and A = 0.65π respectively, both exhibit leapfrogging,
as predicted, with the panel (c) results again having a much larger period than in panel
(a). Compared to the larger cylinder case in figure 6, here we find the vortices undergo
a more sustained region of reversed motion (in the counter-clockwise direction). In figure
8(e) A(0) = 0.67π > Amax and thus there is no leapfrogging, but clearly there is still a
large amount of interaction between the two vortices, more so than in figure 6, as the
range of radial values covered by the vortices is larger here. Unlike for the case in figure
6(e), here both vortices travel counter-clockwise around the cylinder, but with vortex 2
(light curve, red) travelling significantly faster. In general, as A is increased towards
Amax (or decreased towards −Amax ) for a given value of R(0), the speed of the vortices
reduces and the period of the motion increases. Then for 0 > A(0) − Amax ≫ −1 the
vortices change direction but keep on leapfrogging one another as for result 5 in figure
7(b), which plots the time evolution of α1,2(t) for the cases in figure 8. As A(0) passes
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Figure 8: (colour online) Plot of (a,c,e,g) (θ, r)−plane and (b,d,f,h) (x, y)−plane for
µ = 0.8, d = 0.2, and the inital vortex separation conditions R(0) = 0.5 and (a,b)
A(0) = 0.4π , (c,d) A(0) = 0.65π , (e,f) A(0) = 0.67π and (g,h) A(0) = 0.98π . These
4 cases correspond to the paths numbered 4-7 respectively in the phase-plane in figure
5(b). In each panel the darker line (blue) represents vortex 1 while the lighter line (red)
represents vortex 2.

over the separatrix so that now 1 ≫ A(0)−Amax > 0 then the vortices no longer leapfrog
one another, but both remain travelling in the counter-clockwise direction, see result 6 in
figure 7(b). As A is increased further, then the direction of vortex 1 changes such that
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the vortices now travel in opposite directions, see result 3 from figure 7(a).
If however, the (A,R)-plane also has closed contours centred on A = π , as is the case

for result 7 in figure 5(b), then there is an additional form of solution which is possible,
given in figures 8(g) and 8(h). Here the initial condition places the two vortices almost
on opposite sides of the cylinder. In this case the vortices remain approximately π out of
phase with one another and so their interaction is much weaker. In the physical-plane in
panel (h) this shows two vortices completing near circular orbits of the cylinder, with each
perturbed slightly by the other vortex. Here both vortices are travelling counter-clockwise
around the cylinder.
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Figure 9: Plot of αj(t) for vortex j = 1 (dark curve, blue), 2 (light curve, red) for µ =
−0.15 and (a) d = 0.6 and (b) d = 0.2. In each panel the numbering of the results
corresponds to that in figures 5(e) and 5(f) respectively, and the results are separated by
the constant 10 for clarity.

Finally we consider cases for µ < 0 in figure 9. As the most illuminating plots for
identifying leapfrogging are the time evolution plots of α1,2(t) , we consider only these for
cases 8-13 from figures 5(e) and 5(f). The results agree completely with those already
documented in figure 7 and thus proves that leapfrogging around a circular cylinder can
also occur with vortices with strengths of opposite sign. A result already known for vortex
rings [29].

4 Conclusions and Discussion

In this article a criteria indicating when two interacting point vortices of differing strengths,
in the vicinity of an impermeable circular cylinder, undergo periodic leapfrogging is de-
rived. The criteria is a function of the vortex strength ratio, µ = Γ1/Γ2 , and the radius
of the cylinder, a . This criteria is determined as a critical constant Ccrit such that we
get leapfrogging for C > Ccrit where C is given by (11). Unlike in the infinite, straight
barrier case studied by [19], the vortices don’t separate completely for C < Ccrit due to
the periodic geometry, and in this case we find weak, non-leapfrogging interactions of the
two vortices.

In the numerical results presented, we chose to consider a fixed radial spacing of the
vortices initially, which leads the condition C > Ccrit being considered as a condition on
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the initial azimuthal spacing A(0) being less than some critical value Amax for leapfrogging
to occur. For Γ1 ≥ Γ2 > 0 the leapfrogging motion occurs with both vortices moving
clockwise around the cylinder. For a fixed A(0) value, as the critical value of Amax is
approached from below, the velocity of the vortices slow until they begin to leapfrog in the
counter-clockwise direction. Beyond the critical azimuthal separation Amax we find that
the speed of the weaker vortex, vortex 2, increases greatly and hence moves too fast to
leapfrog with vortex 1. Increasing the radial separation further causes the vortices to travel
in opposite directions around the cylinder, only weakly interacting with each other when
their azimuthal coordinates are comparable. For small values of Γ1/Γ2 > 0 and small
cylinders, a second separatrix forms in the (A,R)-plane, and when the vortex pair have
initial conditions which puts them in this part of the phase space, the vortices again travel
in the same direction, counter-clockwise this time, but their azimuthal separation oscillates
around a value of π . Hence there is very little interaction in this case. We also identify
leapfrogging for vortices with strengths of different sign (Γ1/Γ2 < 0 and Γ1 + Γ2 6= 0).
In this case the values of Amax for a given radial separation are typically much smaller
than for Γ1/Γ2 > 0, meaning the vortices need to initially be closer together to observe
leapfrogging.

The theory presented here can be extended to examine the motion of two line vortices
exterior to other closed barriers by using conformal mappings. It can be shown by fol-
lowing the work of [30] and [28] that given a conformal mapping z = G(Z) between the
complex z - and Z -planes, that the Hamiltonians in both planes for two line vortices are
related via

Hz(z1, z2) = HZ(Z1, Z2) +
1

4π

2∑

j=1

Γ2
j log |G′(Zj)|+

2∑

j=1

ΓjIm(ŵ(Zj)).

Here the complex function ŵ(Z) is chosen to ensure the circulation around the closed
body is zero, i.e. the only circulation in the flow is due to the vortices themselves. For
the motion of a pair of vortices around a closed barrier,

HZ(Z1, Z2) = −Γ1Γ2

2π
log

∣∣∣∣
Z1 − Z2

Z1 − Z2

∣∣∣∣+
1

4π

2∑

j=1

Γ2
j log |2Im(Zj)|,

is the Hamiltonian for the two point vortices problem next to a horizontal barrier con-
sidered by [19] and G(Z) is a conformal mapping which maps the upper half Z -plane to
the exterior of a closed body. For the circular cylinder considered in this paper

G(Z) =
a(Z + i)

Z − i
, and ŵ(Z) =

i(Γ1 + Γ2)

2π
log

(
a(Z + i)

Z − i

)
,

giving Hz(z1, z2) which agrees with (7). For other simple geometries, such as the elliptical
cylinder the form of G(Z) is known analytically, but for more complicated geometries the
mapping would need to be computed numerically [31].

Other interesting extensions to this work include adding external flow fields to the
problem. For example an additional circulation of strength Γ3 could be included around
the cylinder which would modify the velocities of the vortices in one particular direction,
with the vortex located closest to the cylinder at any one time being most readily affected.
Note, this flow with Γ3 = −(Γ1+Γ2) can be used to model the flow where the two vortices
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are located inside the cylinder. In a similar vein, a weak uniform flow past the cylinder
could be considered, but this has the added complication that now the radial symmetry
of the problem is broken and so the initial locations of the vortices become significant,
not just their relative initial positions.Also of potential interest is the study of two point
vortices on the surface of a sphere with a boundary, to identify whether it is possible
for these vortices to undertake leapfrogging. Here the flow field can be projected onto a
stereographic complex plane, where conformal methods can again be applied [5].

The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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[1] H. von, Helmholtz, “Über Integrale der hydrodynamischen Gleichungen, welche den
Wirbelbewegungen entsprechen”, J. Reine Angew. Math 55, 25 (1858).

[2] P. G. Tait, “On integrals of the hydrodynamical equations, which express vortex-
motion”, Philos. Mag. 33(4), 485 (1867).
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