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Abstract

Numerical integration of complex linear systems of ODEs depending analytically
on an eigenvalue parameter are considered. Complex orthogonalization, which is
required to stabilize the numerical integration, results in non-analytic systems. It
is shown that properties of eigenvalues are still efficiently recoverable by extracting
information from a non-analytic characteristic function. The orthonormal systems
are constructed using the geometry of Stiefel bundles. Different forms of continuous
orthogonalization in the literature are shown to correspond to different choices of
connection one-form on the Stiefel bundle. For the numerical integration, Gauss-
Legendre Runge-Kutta algorithms are the principal choice for preserving orthog-
onality, and performance results are shown for a range of GLRK methods. The
theory and methods are tested by application to example boundary value problems
including the Orr-Sommerfeld equation in hydrodynamic stability.

Key words: Orthonormalization, Stiefel bundles, Constraints, Geometric
integration, Poincaré index, Newton’s method.

1. Introduction

Linear systems of ordinary differential equations (ODEs) depending analytically
on a parameter λ ∈ C arise in a number of applications. They are typically of the
form

yx = A(x, λ)y, y ∈ Cn , a ≤ x ≤ b (1)

where A(x, λ) is a given n× n complex matrix depending smoothly on x and ana-
lytically on λ, for all λ ∈ Λ where Λ ⊂ C is an open simply-connected subset. This
system is accompanied by homogeneous boundary conditions

B(λ)y(a) = 0n−k , C(λ)y(b) = 0k , (2)

where B(λ) is a (n− k)× n matrix of rank (n− k) and C(λ) is a k × n matrix of
rank k, with 1 < k < n. Both B(λ) and C(λ) are analytic for all λ ∈ Λ. Values of λ
for which this system has non-trivial solutions are eigenvalues. Analytic boundary-
value problems (BVPs) of this type arise in hydrodynamic stability (e.g. [15, 6]), in
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the linear stability of solitary waves and fronts (e.g. [1, 35, 23]), and in a variety of
other applications (e.g. [3, 4]).

Theoretically, construction of solutions of this problem is straightforward. Let
Y a(λ) be any n × k matrix, depending analytically on λ, whose columns satisfy
the boundary condition at x = a. Let Y (x, λ) be the n × k matrix whose columns
are the solutions of the ODE (1) satisfying Y (a, λ) = Y a(λ). A value λ ∈ Λ is an
eigenvalue if Y (b, λ) satisfies the boundary condition at x = b; that is if the analytic
function ∆(λ) vanishes where

∆(λ) = det[C(λ)Y (b, λ)] . (3)

In the context of boundary-value problems this function is typically called the “char-
acteristic function”, and in the context of the stability of solitary waves this function
is called the Evans function. Since ∆(λ) is analytic, properties of its zeros can be
studied using Cauchy’s theorem, and there is a wide range of other results from
analytic function theory that can be appealed to.

For most problems in hydrodynamic stability, and many problems in the stability
of solitary waves, little progress can be made analytically and numerical methods
are needed to solve the BVP. There are three distinct problems that arise in the
numerical construction of solutions. The first is how to construct analytic starting
vectors (columns of Y a(λ)). That such a basis can always be chosen analytically
follows from the Gohberg-Rodman theorem1. However, numerical construction of
such an analytic basis can be non-trivial. A strategy for computing the columns of
Y a(λ) is proposed in [22].

In this paper we will restrict attention to the second and third numerical dif-
ficulties associated with the BVP: the integration from x = a to x = b and the
numerical study of the zeros of the analytic function ∆(λ). Since analyticity of
starting vectors is not considered, we can simplify matters by assuming henceforth
that the boundary conditions do not depend on λ

By(a) = 0n−k , Cy(b) = 0k , (4)

where B is a constant (n− k)× n matrix of rank (n− k) and C is a constant k× n
matrix of rank k.

The initial-value problem to be integrated numerically is

Y x = A(x, λ)Y , Y ∈ Cn×k , with Y (a, λ) ∈ Ker(B) . (5)

In the problems of interest in hydrodynamic stability and stability of waves, numer-
ical integration of this problem is notoriously unstable: it is difficult to maintain
linear independence of the columns of Y (x, λ) numerically. This problem is over-
come by using the freedom in the choice of basis for the columns of Y (x, λ). Let

1The Gohberg-Rodman theorem states there exists a uniformly analytic basis for the kernel of
a matrix which depends analytically on a parameter; see Theorem S6.1 on page 388 of [18].
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Y a be any fixed n× k matrix of rank k in the kernel of B. Then

Ker(B) = { Ỹ a ∈ Cn×k : Ỹ a = Y am , m ∈ Ck×k with det(m) 6= 0 } .

We are free to choose any basis for Ker(B), and since the ODE is linear, we can
choose any basis for the solution space as a function of x and λ as well. Let

Y (x, λ) = V (x, λ)m(x, λ) .

Instead of integrating (5) we integrate

V x = A(x, λ)V − V g , with V (a, λ) = Y a

mx = gm , with m(a, λ) = ma ,
(6)

where ma is any invertible k × k complex matrix. We are free to choose the k × k
matrix g(x, λ). The numerical strategy is to choose g(x, λ) so that the integration is
stable and robust. The choice of g does not affect the zeros of the complex function
since

∆(λ) = det[CY (b, λ)] = det[CV (b, λ)m(b, λ)] = det[m(b, λ)] det[CV (b, λ)] ,

and det[m(b, λ)] 6= 0 because det(ma) 6= 0 by construction, and the determinant of
m(x, λ) can not vanish, due to the Abel-Liouville Theorem for ODEs.

In continuous orthogonalization the function g is chosen so that the columns
of V are orthonormal. The condition for orthonormality of the columns of V is
V HV = Ik where the superscript H denotes complex conjugate transpose. The
manifold defined by this condition, the Stiefel manifold, is a compact submanifold
of Cn×k. Hence, if orthogonalization can be preserved numerically, the trajectories
of the differential equation for V (x, ·) are bounded. However, there is no unique
choice for g that results in orthogonalization. Indeed, we will show that the choice

g = V HAV − S(x, V ) ,

where S(x, V ) is any skew-Hermitian matrix depending smoothly on its arguments,
generates a path on the Stiefel manifold. Hence there is a continuum-infinite number
of choices of g that give an orthonormal path. There are at least three choices in
the literature: choose S associated with Gram-Schmidt orthogonalization [19, 13,
11, 12], choose S = 0 [16, 10, 23], and choose S using orthogonal projection from
C

n×k onto the tangent space of the Stiefel manifold [6, 7]. However, the full range
of this non-uniqueness has yet to be exploited. Other choices of g may optimize
other aspects of the numerics. One can even work directly on the Grassmannian.
This involves choosing an atlas for the Grassmannian and chart switching and leads
to matrix Ricatti equations. An efficient algorithm for working directly on the
Grassmannian has recently been proposed [29].

In this paper the differential geometry of Stiefel bundles will be used as a basis
for constructing the numerical algorithm. The bundle structure of Stiefel manifolds
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is developed in §2. It is a generalization of ideas in [6, 17, 7, 27] where the differential
geometry of Stiefel manifolds was used.

There is however another problem with complex orthogonalization: it does not
preserve analyticity. The function ∆(λ) will not in general be analytic when V is
orthonormal. For example, taking k = 1 and the vector-valued analytic function
u : Λ → C

n, the QR-decomposition is just

u(λ) =
u(λ)

‖u(λ)‖
‖u(λ)‖ := Q(λ, λ) R(λ, λ) ,

and the norm is not analytic since ‖u(λ)‖2 = u(λ)
T
u(λ) and so it depends on both

λ and λ. This loss of analyticity does not affect the numerical integration of the
ODE from x = a to x = b, but it introduces a non-analytic component into ∆(λ).
Suppose a QR-decomposition of Y (x, λ) is used. Then

Y (x, λ) = Q(x, λ, λ) R(x, λ, λ) ,

and so
∆(λ) = det[CQ(b, λ, λ)R(b, λ, λ)] = q(λ, λ) r(λ, λ) ,

where r(λ, λ) = det[R(b, λ, λ)]. The analytic function ∆(λ) is a product of two
non-analytic functions.

This problem of non-analyticity was first studied by Humpherys & Zum-
brun [23]. Their approach is to solve for both Q(x, λ, λ) and the determinant
of R(x, λ, λ) and then the analytic function ∆(λ) can be recovered in full. The
approach proposed in this paper is complementary: the idea is to see how much
information can be extracted from q(λ, λ) without computing R(x, λ, λ).

By construction det[R(x, λ, λ)] 6= 0 and so r(λ, λ) 6= 0. Therefore ∆(λ) = 0
if and only if q(λ, λ) = 0. In principle it is sufficient, for finding eigenvalues, to
compute only q and discard r. However, q is not analytic. On the other hand, it
has an interesting property which makes it almost analytic: we prove that the index
of q(λ, λ), considered as a vectorfield on the plane, equals the number of zeros of
q in that region, including multiplicity. Therefore there is an analogue of Cauchy’s
theorem for q(λ, λ).

The use of Newton’s method to find zeros of q(λ, λ) has to be refined. The
function q has to be considered as a function of λ and λ. Even here there are
surprises. Near zeros of q(λ, λ) it behaves like an analytic function, and so Newton
iteration assuming analyticity still converges when the initial condition is sufficiently
close to a zero. We present performance results for Newton’s method with and
without the hypothesis of analyticity.

Although the induced system on the Stiefel manifold preserves orthogonality
exactly, numerical methods have to be chosen carefully to respect this property.
In this paper we test a range of Runge-Kutta algorithms, principally the Gauss-
Legendre Runge-Kutta (GLRK) algorithms. It is often stated in the literature that
GLRK methods preserve the Stiefel manifold (indeed any quadratic invariant) to
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machine accuracy. However, this requires iterating to convergence at each step, a
result first observed in [11]. Our results show that preservation of the Stiefel manifold
is intimately connected with the tolerance of this iteration. We present performance
results for 4th, 6th and 8th order implicit GLRK methods, and compare them with
explicit RK as well as explicit RK with stabilization. There are other geometric
integration methods that preserve the Stiefel manifold and are competitive. The
principal example is the class of Munthe-Kaas RK methods, and performance results
for these methods are reported in [27, 8, 9]. We do not compare speed, as the main
interest in this paper is how well the Stiefel manifold is preserved, and the impact
on analyticity when complex orthogonalization is used.

2. Differential geometry of Stiefel bundles

For each λ ∈ Λ, solutions of (5) are paths Y (x, λ) in Cn×k. Cn×k is a linear
vector space, but solution paths Y (x, λ) are required to have rank k for all x, and
this brings in a manifold structure.

Take the standard Hermitian metric on Cn×k,

〈U , V 〉 := Tr
(
UHV

)
, with norm ‖U‖ :=

√
Tr

(
UHU

)
.

Then the Stiefel manifold

Vk(Cn) = {Q ∈ Cn×k : QHQ = Ik} . (7)

can be viewed as the image of a projection [31]

Π(Y ) = arg min
Q∈Vk(Cn)

‖Y −Q‖2 , Y ∈ Cn×k .

In the case k = 1 this projection reduces to

Π(Y ) =
Y

‖Y ‖
, Y ∈ Cn \ {0} .

The image of Π : Cn×k → Vk(Cn) is the point Q ∈ Vk(Cn) which minimizes the
distance from Y to Vk(Cn). The differential

dΠY : TYC
n×k → TQVk(Cn) ,

provides an easy way to find the tangent space of Vk(Cn). The tangent space at
each point is a subspace of Cn×k of the form (see pages 639–640 of [31])

TQVk(Cn) =
{

F ∈ Cn×k : F = Q⊥B + QC
}

,

where C is skew-Hermitian and B is an (n− k)× k matrix. The dimension of the
Stiefel manifold is then the dimension of skew-Hermitian matrices plus the dimension
of n× (n− k) matrices

dim Vk(Cn) = k(n− k) + 1
2
k(k − 1) (complex dimension) .
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By a dimension count, the normal space to TQVk(Cn) in Cn×k has dimension 1
2
k(k+

1). Using the Hermitian inner product on Cn×k, the normal space is

NQVk(Cn) =
{

W ∈ Cn×k : W = QD
}

,

with D a k × k Hermitian-symmetric matrix.
When Q ∈ Vk(Cn) then g in (6) is chosen so that the right-hand side of (6) is

in the tangent space,

Qx = A(x, λ)Q−Qg ∈ TQVk(Cn) . (8)

Using the above characterization of the tangent space gives

Qx = (I −QQH)AQ + Q skewC(QHAQ) , (9)

where skewC(F ) := 1
2
(F − F H). Hence

g = sym
C
(QHAQ) , sym

C
(F ) := 1

2
(F + F H) .

2.1. Stiefel manifold as a principal fiber bundle

Stiefel manifolds can also be characterized as fiber bundles. The total space is
Vk(Cn), the base manifold is the Grassmannian Gk(Cn) and the fiber is the unitary
group U(k),

U(k) → Vk(Cn)

↓
Gk(Cn) .

Indeed, the Stiefel bundle is a principal fiber bundle since U(k) acts freely on Vk(Cn)
and the fiber is a group (cf. §5.2 of [24]). The unitary group is defined by

U(k) =
{
m ∈ Ck×k : mHm = Ik

}
.

It is a Lie group of real dimension k2. The Lie algebra of U(k), denoted u(k),
consists of complex k × k skew-Hermitian matrices with the Lie bracket given by
the commutator. The unitary group is non-abelian for k > 1. The determinant of a
unitary matrix lies on the unit circle

det : U(k) → U(1) ∼= S1 .

The action of U(k) on Vk(Cn) is by a right action

Φm(Q) = Qm , for any Q ∈ Vk(Cn) , and m ∈ U(k) .

Some properties of the fiber bundle structure of Vk(Cn) have been used in other
contexts (e.g. in numerical linear algebra [17], in the computation of Lyapunov ex-
ponents [7, 27]). Here further properties of the geometry of the bundle formulation
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are used, in particular our main new observation is the role of the “universal con-
nection” on the Stiefel bundle in the construction of induced differential equations
for numerical integration.

To lighten the notation let

P := Vk(Cn) , M := Gk(Cn) , G := U(k) and g := u(k) .

The principal fiber bundle is denoted by (P, π, M) where π : P → M is the natural
projection which is a smooth submersion.

The tangent space of P has a natural subspace at each point called the vertical
subspace

VpP = { v ∈ TpP : dpπ(v) = 0 } ,

and ∪p∈P VpP is a distribution on P . There is no unique complement. However, the
existence of a complement, called the horizontal subspace HpP at each p ∈ P , gives
a splitting of the tangent space

TpP = HpP ⊕ VpP , for each p ∈ P . (10)

When this distribution of horizontal subspaces is also equivariant, it is called a
connection on the principal fiber bundle (cf. §6.1 of [24], or [26, 37]). A precise
definition of the horizontal subspace in terms of a connection one-form will be given
below.

This splitting in (10) is useful as it gives a precise way to decompose the right-
hand side of (8). Indeed, the different choices of orthogonalization in the literature
correspond to different choices of horizontal distribution.

For the case of the Stiefel bundle, the vertical subspace is

VQVk(Cn) = {V ∈ TQVk(Cn) : V = Qn , n ∈ u(k) } .

2.2. Connection one-forms on the Stiefel bundle

A connection one-form on a principal fiber bundle is a g−valued one-form Ωp(v).
For each p ∈ P it is a mapping from TpP to g satisfying [24, 26, 37]

• Ωp(ξp) = ξ for all p ∈ P , ξ ∈ g,

• ΩΦg(p)(TpΦgvp) = AdgΩ(vp) for all p ∈ P , g ∈ G .

In this definition,

ξp :=
d

ds

∣∣∣
s=0

Φg(s)(p) ,

TpΦg :=
d

ds

∣∣∣
s=0

Φg(p(s)) ,

AdgΩp(vp) := g−1Ω(vp)g .

The connection one-form is useful because of the following property

HpP = {vp ∈ TpP : Ωp(vp) = 0} .
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The horizontal distribution in the splitting (10) is determined by the kernel of Ωp.
There is a one-to-one correspondence between the choice of horizontal distribution
and a connection one-form [24].

On the Stiefel bundle there is a particularly important connection one-form: the
universal connection [33]. Reverting back to Stiefel manifold notation, the universal
connection on the Stiefel manifold is

ΩQ (F ) = QHF , for Q ∈ Vk(Cn) , F ∈ TQVk(Cn) .

Let’s verify that ΩQ is indeed a connection one form. Any element in TQVk(Cn) is
of the form

F = Q⊥B + QC , (11)

where C is skew-Hermitian and so C ∈ u(k). Now

QHF = QHQ⊥B + QHQC = C ∈ u(k) ,

verifying that that the image of ΩQ is in u(k). Check the action on tangent vectors
to the group orbit,

d

ds

∣∣∣∣
s=0

Φg(s)(Q) = Qξ , for some ξ ∈ u(k) ,

and so
ΩQ(ξp) = ΩQ(Qξ) = QHQξ = ξ ,

verifying the second property of a connection one-form.
Since U(k) is a matrix group TpΦg(p) = vpg for a tangent vector vp ∈ TpP . Hence

for any m ∈ U(k)

ΩΦm(Q)(TQΦmF ) = (Qm)HFm

= mHQHFm

= m−1ΩQ(F )m

= AdgΩQ(F ) .

This computation verifies that ΩQ is a connection one-form on the Stiefel bundle.
The kernel of ΩQ is a horizontal subspace of the tangent space of the Stiefel bundle
at each point.

Apply this result to (8). Choose g so that the right-hand side is horizontal

0 = ΩQ(AQ−Qg)

= QH (AQ−Qg)

= QHAQ−QHQg

= QHAQ− g .
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Hence the right hand side of (8) is horizontal if g = QHAQ. Substituting this
expression into the right-hand side of (8) gives

Qx =
(
I −QQH

)
A(x, λ)Q , (12)

which is precisely the Drury-Davey algorithm [16, 10]. There is an interesting con-
sequence of this characterization: the flow (12) defines a parallel transport along the
bundle. The trajectory travels from x = a to x = b with the minimum of rotation
of the fibers. Parallel transport is the generalization to arbitrary bundles of the
concept of a geodesic [37]. This system is in some sense optimal – with respect to the
universal connection. This property of the equation (12) might explain the excellent
behaviour of this algorithm found by Humpherys & Zumbrun [23]. However, this
system is not optimal in every sense. Differences between the orthonormalization
schemes show up when the impact on analyticity is considered, and in the numerical
implementation.

Parallel transport is defined as follows. Consider any curve c(x) in Gk(Cn)
passing through some point c(0) = c0 ∈ Gk(Cn). For any point Q ∈ Vk(Cn)
in the fiber over c0, there is a unique curve c∗(x) in Vk(Cn), call the horizontal
lift of c, which passes through Q, projects to c(x), and is everywhere horizontal:
d
dx

c∗(x) ∈ Kernel(ΩQ). If c(x1) = c1 and c(x2) = c2, each point Q1 in the fiber over
c1 is connected by a unique horizontal lift of c(x) to a point Q2 in the fiber over c2.
The map from Q1 to Q2 is called parallel displacement along c(x). Thus parallel
displacement determines a map from π−1(c1) to π−1(c2).

Horizontal lifting and parallel displacement depend on the choice of connection
in the principal fiber bundle.

3. What is continuous orthogonalization?

Let Q(x) ∈ Cn×k be a continuous path on the interval a ≤ x ≤ b. This path is
a continuous orthogonal path if in addition

Q(x)HQ(x) = Ik , for all x ∈ [a, b] .

Now suppose Q(x) is a C1 path. Then the path preserves orthogonality if

d

dx
Q(x)HQ(x) + Q(x)H d

dx
Q(x) = 0 ∀x ∈ [a, b] , and Q(a)HQ(a) = Ik .

We argued earlier that Qx should lie in the tangent space of Vk(Cn). However, this
tangent space has many subspaces, and so orthogonalization can take many forms.
Let S(x,V) be any skew-symmetric k×k matrix depending smoothly on its entries.
Given a differential equation Qx = AQ with Q(a) ∈ Vk(Cn), then the path Q(x)
satisfying the ODE is an orthonormal path if

Qx = (In −QQH)A(x, λ) + QS(x, Q) , with Q(a) ∈ Vk(Cn) ,
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for any choice of S. Special cases include (a) Gram-Schmidt orthogonalization
[19, 13, 11, 12], (b) parallel transport (S = 0) [16, 10, 23], and orthogonal projection
from C

n×k onto the tangent space of the Stiefel manifold (S = skewC(QHAQ))
[6, 7].

Different choices of S provide different horizontal paths through the Stiefel bun-
dle. We conjecture there is a one-to-one correspondence between a choice of S is
continuous orthogonalization and a choice of connection one-form on the Stiefel bun-
dle. A geometric view of continuous orthogonalization is then a choice of connection
one-form for construction of the ODE on the tangent space of the Stiefel manifold.

There is a curiousity that arises when parallel transport is used that is related to
the concept of holonomy in differential geometry. Take the vectorfield on the Stiefel
bundle (9) as a starting point, and compare it with the parallel transport equation

W x = (I −WW H)AW .

Now let
W (x) = Q(x)m(x) ,

where m(x) is a path in U(k). The matrix m(x) will determine the precise amount
of movement up or down the fiber to assure that W (x) is parallel. Substituting this
expression into (9) and using the equation for W gives

mx = −[skewC(QHAQ)] m .

The trace of a skew-Hermitian matrix is purely imaginary. Hence the determinant
of m gives a path on the unit circle. This is the so-called geometric phase of the
path. It is an analogue of Berry’s phase in quantum mechanics. A view of Berry’s
phase from the point of view of Stiefel bundles is given in [5]. Hence, given any
path of the differential equation defined by parallel transport there is an attendant
phase shift. These phases appear to have many interesting properties but will not
be studied here. The recent PhD thesis of Way [39] explores these phases in the
context of numerical integration of boundary-value problems.

4. Analyticity and orthogonalization

Orthogonalization will not in general preserve analyticity. Analyticity is useful
because Cauchy’s Theorem can be used to determine the number of zeros of an
analytic function in a region, it simplifies the use of Newton’s method, and in general
the many properties of analytic functions can be appealed to.

Suppose Q is the induced path on Vk(Cn) associated with the ODE (1). Then
Y (x, λ) = Q(x, λ)R(x, λ) and substitution into (9) shows that

Rx = symC (QHAQ) R , R(a, λ) = Ik . (13)

where symC(F ) = 1
2
(F + F H). The important property here is that the coefficient

matrix of the ODE (13) is Hermitian. Now look at the effect of this decomposition
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on ∆(λ)
∆(λ) = det[CY (b, λ)]

= det[CQ(b, λ, λ)R(b, λ, λ)]

= det[CQ(b, λ, λ)] det[R(b, λ, λ)]

:= q(λ, λ) r(λ, λ) .

But
d
dx

det[R(x, ·)] = Trace(R(x, ·)−1 d
dx

R(x, ·)) det[R(x, ·)]

= Trace(symC (QHAQ)) det[R(x, ·)] ,
and the trace of a hermitian matrix is real. Hence there exists a real-valued function
τ(λ, λ) such that r(λ, λ) = exp[τ(λ, λ)], and so

∆(λ) = q(λ, λ) exp[τ(λ, λ)], τ ∈ R . (14)

Although the right-hand side is analytic, it is the product of two non-analytic func-
tions, one of which is real and never zero. Hence ∆(λ) = 0 if and only if q(λ, λ) = 0.

Contrast this result with the effect of using the parallel transport equation (12).

Let Y (x, λ) = W (x, λ, λ)R̃(x, λ, λ) and substitute into (12). The matrix R̃(x, λ, λ)
satisfies

R̃x = (W HAW ) R̃ , R̃(a, λ) = Ik . (15)

In this case the coefficient matrix (W HAW ) is not hermitian and so the q − r̃
decomposition of ∆(λ) is:

∆(λ) = det[CHY (b, λ)] = det[CHQ(b, λ, λ)] det[R̃(b, λ, λ)] := q(λ, λ) r̃(λ, λ) ,

and in this case the term r̃(λ, λ) is complex valued.

4.1. The index of the non-analytic function q(λ, λ)

When a function is analytic, Cauchy’s Theorem gives a precise count of the zeros
in a simply-connected region of the complex plane. When a function is not analytic
the analogue is “the index”; sometimes called Poincaré index, and is a special case
of the topological degree. But the index does not give a precise count of zeros in
general, only a sufficient condition for the existence of at least one zero. However,
we will show that the function q(λ, λ) retains a key property of the analytic function
∆(λ): the index equals the number of zeros in the chosen set.

The index of a vectorfield u(x, y) := (u(x, y), v(x, y)) relative to a set in the
(x, y)−plane is defined as follows. Let C be a simple closed curve in the (x, y) plane
with simply-connected interior D and let (x(t), y(t)), 0 ≤ t ≤ 2π be a parametriza-
tion of C . Then

Ind(u; D) =

∫
C

udv − vdu

u2 + v2
=

1

2π

∫ 2π

0

uv̇ − vu̇

u2 + v2
dt .

When u + iv is an analytic function, the index reduces to Cauchy’s Theorem and
the index equals the number of zeros in the region D.
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Let q = u + iv and λ = x + iy, and separate ∆ into real and imaginary parts

∆r := Re(∆) = eτ u and ∆i := Im(∆) = eτ v .

Lemma. Let C be a Jordan curve in the λ−plane with interior D, and suppose
∆ is analytic in D. The Cauchy index of ∆ is equal to the Poincaré index of the
vectorfield u = (u, v)

Ind(∆, D) = Ind(q, D).

Proof. Cauchy’s theory for the analytic function ∆ states that

Ind(∆, D) =
1

2πi

∮
∆′(λ)

∆(λ)
dλ .

Parameterizing the λ curve by t ∈ [0, 2π) and substituting

Ind(∆, D) =
1

2π

∫ 2π

0

∆r∆̇i −∆i∆̇r

∆2
r + ∆2

i

dt

=
1

2π

∫ 2π

0

ueτ (τ̇ veτ + v̇eτ )− veτ (τ̇ueτ + u̇eτ )

e2τ (u2 + v2)
dt

=
1

2π

∫ 2π

0

uv̇ − vu̇

u2 + v2
dt = Ind(q, D).

�
Hence the Poincaré index of the non-analytic function q is equal – including multi-
plicity – to the number of zeros of ∆(λ) in the region.

Computing the index is equivalent to computing the topological degree of q.
Several algorithms have been proposed in the literature for computing the topological
degree (e.g. Ko et al. [25]). In §8 a simple algorithm based on the trapeziodal
rule and numerical differentiation is proposed.

5. Example boundary value problems

Three examples will be used for illustration of the theory. First a two-dimensional
example. Consider

φxx + λφ = 0 , 0 < x < π , λ ∈ C , (16)

where φ(x, λ) is a complex-valued function, with boundary conditions

φ(0, λ) = 0 and φx(π, λ) = 0 .

The exact eigenvalues are

λk =

(
k +

1

2

)2

, k = 0, 1, 2, . . . ,
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with eigenfunctions
φn(k, λk) = ak sin (k + 1/2) x ,

where ak is an arbitrary constant.
The second is a four-dimensional example proposed by Ng & Reid [34],

φxxxx − λ4φ = 0 , 0 < x < 1 , λ ∈ C . (17)

Here φ(x, λ) is a complex-valued function, with boundary conditions at x = 0

φ(0, λ) = φx(0, λ) = 0 ,

and boundary conditions at x = 1,

φ(1, λ) = φx(1, λ) = 0 .

The exact solution is given in [34]. The eigenvalues are all real and satisfy

cos λ =
1

cosh λ
.

The lowest eigenvalue is λ1 ≈ 4.73.
The third example is the Orr-Sommerfeld equation from hydrodynamic stability

theory. It is a notoriously stiff system when the Reynolds number R is large, so it
provides a good test case for complex orthogonalization. Indeed, it is the equation
that inspired much of the early work on complex orthogonalization [16, 10, 6].

The Orr-Sommerfeld equation can be expressed in the form

yx = A(x, λ)y, y ∈ C4, a ≤ x ≤ b (18)

with homogeneous boundary conditions

By(a, λ) = 02 and Cy(b, λ) = 02 , with B = C =

(
1 0 0 0
0 1 0 0

)
. (19)

The matrix A depends smoothly on x and λ,

A(x, λ) =


0 1 0 0
α2 0 1 0
0 0 0 1

−iαRU ′′(x) 0 γ(x, λ) 0

 , γ(x, λ) = α2 + iαRU(x) + λR (20)

Equation (18) arises for example when investigating the linear stability of the stream-
wise velocity profile U(x) in a plane channel, x being the direction normal to the
channel walls. The explicit form for U(x) for plane channel flow is

U(x) =
4U0

(a− b)2

(
−ab + (a + b)x− x2

)
, a ≤ x ≤ b ,

where U0 is a constant, representing the maximum velocity at the channel centre. In
the numerics, U0 is normalized to unity, and a, b are taken to be −1, +1 respectively.

The velocity field is perturbed by harmonic waves with wavenumber α ∈ R and
wavespeed c ∈ C. In the matrix A, R is the Reynolds number, whereas λ = −iαc.
If, for a given value of the complex parameter λ, there is a solution to the boundary
value problem (18)-(19), then λ is said to be an eigenvalue and the corresponding
solution an eigenmode. If Reλ > 0 for some λ then U(x) is linearly unstable.

13



6. From geometry to numerical algorithms

Denote by GLRK4 (GLRK6, GLRK8) the two-stage (respectively three and four stage)
GLRK methods of order four (respectively six and eight). They are symplectic, fully
implicit RK collocation schemes, based on shifted Legendre polynomials and they
preserve quadratic invariants [20, 30].

Let H(Q, x) ∈ SkewnC, then the differential equation Qx = H(Q, x)Q pos-
sesses the invariant I(Q) = QHQ and a GLRK scheme preserves I to machine
accuracy. Any ODE on the Stiefel manifold can be represented in this form. Con-
sider

Qx = (In −QQH)AQ + QS ,

where S is any (x, Q) dependent skew-Hermitian matrix. Then subtraction of the
trivial term

−AH(In −QQH)Q ,

converts the equation into skew-symmetric form

Qx = H(Q, x)Q , (21)

with
H(Q, x) = 2 skewC

[
(In −QQH)A

]
+QSQH (22)

The GLRK methods are fully implicit, hence at the i-th step Qi 7→ Qi+1, a
nonlinear system of algebraic equations of the form

Zi,r = h
s∑

j=1

arjF (Qi + Zi,j, xi + cjh) r = 1, . . . , s (23)

has to be solved, and then the solution will be updated

Qi+1 = Qi + h

s∑
j=1

bjF (Qi + Zi,j, xi + cjh). (24)

We solved (23) via a fixed point iteration with initial guess Z [0] = 0 for all r and
i. This fixed-point algorithm is known to converge for h sufficiently small [11].
This algorithm is not the most efficient, though it is the easiest to implement. An
interesting alternative is proposed by McLachlan [32].

There are starting algorithms which provide optimal initial guesses and sensibly
reduce the number of iterations, r, needed for the convergence to the fixed point
[28]. These algorithms are crucial for large systems of equations; in our case, r is
between 2 and 4, and Q ∈ C4×2, and in view of the relatively modest size of the
system (23) we opted for the simpler implementation.

Also connected with the fixed point iteration is the stopping criterion. The
iteration is stopped when the condition ‖Z [k+1] − Z [k]‖F ≤ ε is met. The choice of
the parameter ε plays an important role in how well the Stiefel manifold is preserved.
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Since Qi and
∑

j bjF j can have very different orders of magnitude, the rounding
errors coming from their sum can be more significant than the ones coming from the
solution of (23) itself. To overcome this problem, compensated summations have
been implemented both in the calculation of

∑
j bjF j and in the addition of this

term and Qi. For details on the compensated summation see [21] and [20].

6.1. Explicit RK methods and stabilization

Explicit RK methods can also be used if a stabilization term is added. Let

P (Q) := QHQ− Ik .

Then modification of (21) to

Qx = M̃(Q, x)Q− γQP (Q) = M̂(Q, x)Q (25)

with γ ∈ R+, still defines a flow on Vk(C
n), since on the Stiefel manifold P (Q)

vanishes identically, but

P x = −2γ symC

[
(Ik + P )P

]
= −2γP − 2γP 2 ,

and so the manifold P = 0 is attracting. Here we will use the split step method of
[2]; see also [7] and [23] for variations on this algorithm.

For the calculation a standard explicit RK scheme of fourth order is used in the
first step and the Euler step is repeated two times for the second step, as suggested
in [7]. This coupled scheme is denoted by PERK4. When the explicit RK method is
used without stabilization it is denoted by ERK4.

Method ε |q(λ0, λ0)| ‖Q(1, λ0, λ0)‖F

ERK4 - 9.948160578828703 10−08 1.41421356272021
PERK4 - 7.712189768227568 10−09 1.41421356237310
GLRK4 10−16 2.477341583320470 10−09 1.41421356237309
GLRK6 10−16 2.192808264608588 10−10 1.41421356237309
GLRK8 10−16 2.186958413939397 10−10 1.41421356237309

Table 1: Values of |q(λ0, λ0)| for different numerical methods. The eigenvalue corresponds to the
parameters α = 1.020547, R = 5772.2218, c0 = 0.2640003 and λ0 = −iαc0. For all methods
h = 10−5. Underlined digits represent discrepancies with the exact value ‖Q(1, λ0, λ0)‖F =

√
2.

7. Performance of GLRK and ERK methods

First we test the performance of the complex orthonormalization. The codes were
written in both Matlab and Fortran 90 and tested a Linux (Fedora) workstation
and Unix (Solaris) Sun workstation.
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Method ε Iterations |q(λ0, λ0)|

PERK4 - - 7.712188274879859140943714270361545 10−08

GLRK4 10−16 6.2 2.476828587317406227675273663784758 10−09

GLRK4 10−19 8.0 2.476943132282032274442788242396517 10−09

GLRK4 10−25 10.1 2.476942894862731906931829792273646 10−09

GLRK4 10−30 12.1 2.476942894862759650910360742558537 10−09

Method ε Iterations ‖Q(1, λ0, λ0)‖F

PERK4 - - 1.41421356237309504880168872406560
GLRK4 10−16 6.2 1.41421356237309559882931008932402
GLRK4 10−19 8.0 1.41421356237309504802583329658602
GLRK4 10−25 10.1 1.41421356237309504880168885669407
GLRK4 10−30 12.1 1.41421356237309504880168872423216

Table 2: Behavior of GLRK4 method for different values of the tolerance ε. Upper table: the value
of |q(λ0, λ0)| remains essentially unchanged. Lower table: the lower the tolerance, the bigger the
number of average iterations needed to solve (23), the more the norm of Q approaches the exact
value

√
2. Parameters are those of Table 1.

.

As a benchmark, known eigenvalues of the Orr-Sommerfeld equation are used.
Drazin & Reid [15] report that for α = 1.020547 and R = 5772.2218 the critical
eigenvalue is c0 = 0.264003. We integrated the Orr-Sommerfeld equation on V2(C

4)
in −1 ≤ x ≤ 1 using these parameters and U(x) = 1 − x2. For the range of
integrators we computed |q(λ0, λ0)| and the Frobenius norm of Q(1, λ0, λ0) which
are expected to be null and

√
2 respectively. Table 1 reports the results.

Focussing on the modulus of q, it can be observed that it gets closer to zero as the
order of the scheme increases. Among the fourth order codes, however, GLRK4 with
ε = 10−16 gives the better result. If the preservation of V2(C

4) is examined, the best
result is obtained by PERK4, whereas ERK4 is much less accurate, as expected. The
GLRKx codes, exhibit a very small drift off the Stiefel manifold. This drift behaviour
is however very small, since after 2× 105 iterations the drift is of the order of 10−14,
but its total dependence on the tolerance ε used in the fixed point iterations of
(23) is of interest. It is indeed reasonable to expect that the smaller ε is, the more
accurate the solutions Zi,r are, and the closer Qi+1 will be to the Stiefel manifold.
In fact, using double precision arithmetic, one is actually forced to choose ε around
10−16, and hence we recalculated using quadruple precision. This shifts substantially
the zero precision, so that lower values for the tolerance are allowed. Table 2 reports
the results for PERK4 and for GLRK4 for different values of ε. In quadruple precision,
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the Stiefel manifold is preserved with accuracy driven exactly by ε, and we pay for
this improvement with an increase of the average number of iterations needed to
solve (23). For the absolute value of q minor changes are observable. Due to this
behaviour, in the remainder of the article we will report calculations in quadruple
precision and ε = 10−30, even if we will present results with less digits.

8. Contour integration and computation of the index

In this section algorithms for the numerical integration of index Ind(q, D) for
a simply connected region D are presented. The contour integral is approximated
with the trapezoidal rule,

Ind(q, D) =
1

2π

∫ 2π

0

uv̇ − vu̇

u2 + v2
dt

≈ 1

n

n−1∑
ν=0

u(tν)v̇(tν)− v(tν)u̇(tν)

u(tν)2 + v(tν)2
, tν = ν2π/n, ν = 0, . . . , n− 1.

(26)

The trapezoidal rule has infinite order accuracy for periodic functions [40]. There
are however other sources of error:

• Computation of u, v: the fact u(tν) and v(tν) are obtained as the real and
imaginary parts of q(λ(tν), λ(tν)) which is found from numerical integration of
an ODE from x = a to x = b.

• Computation of u̇, v̇: the derivatives along the contour need to be approxi-
mated.

There are two typical approaches to numerical differentiation. The first is a
centered difference approximation

u̇(tν) =
u(tν + δ)− u(tν − δ)

2δ
− δ2

6

...
u (tν) + · · · . (27)

Another possibility is to employ complex differentiation [38, 36]

u̇(tν) ≈
Im

(
u(tν + iδ)

)
δ

. (28)

Expand the latter expression in a Taylor series

u(tν + iδ) = u(tν) + iδu̇(tν)−
δ2

2
ü(tν)− i

δ2

6

...
u (tν) + · · · .

Now taking the imaginary part and dividing by δ shows that complex differentiation
has the same truncation error as the centered difference (27). Complex differenti-
ation is much better behaved in the limit δ → 0, but it requires complexification
which is cumbersome for complex valued functions.
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To test the index computation, first consider the 2D example (16. Recast (16)
into a system with coefficient matrix

A(λ) =

[
0 1
−λ 0

]
Then continuous orthogonalization with stabilitization leads to the system

Qx = skewC
[
A(λ)− 2QQH symC(A)

]
Q− γQP (Q), Q ∈ V1(C2) (29)

on the interval 0 ≤ x ≤ π. This system is integrated using PERK4. At x = π,
q(λ, λ) = Q2(π, λ, λ), the second component of Q.

Integrating (29) makes available u(tν), v(tν), in that

q
(
λ(tν), λ(tν)

)
= Q2

(
π, λ(tν), λ(tν)

)
= u(tν) + iv(tν)

and this allows us also to compute u̇(tν), v̇(tν), via finite differences.
On the other hand, when employing complex differentiation, integrating (29) is

not sufficient. Indeed, in order to perform complex differentiation (28), we need
to be able to access Im

(
u(tν + iδ)

)
and Im

(
v(tν + iδ)

)
separately, whereas setting

λ = λ(tν + iδ) and integrating (29) will only provide us with Q2

Q2(tν + iδ) = Re
(
u(tν + iδ)

)
+ Re

(
v(tν + iδ)

)
+ i

[
Im

(
u(tν + iδ)

)
+ Im

(
v(tν + iδ)

)]
.

In the expression for Q2, the imaginary parts of u(tν +iδ) and v(tν +iδ) are bundled
together, therefore we can not use this approach for complex differentiation. Hence
the strategy is to first rewrite (29) in real coordinates, that is, we pose Q = U +iV ,
denote by F (U , V ) the right-hand side of Equation (29), and then evolve

Ux = Re
(
F (U , V )

)
V x = Im

(
F (U , V )

)
.

This system is a four-dimensional real system and in order to compute u(tν +iδ) and
v(tν + iδ) it needs to be complexified: the complex system needs to be complexified,
leading to a four-dimensional complex system.

Contour integrals were computed using both finite-difference and complex dif-
ferentiation, in the three domains:

• D1, the disk of radius 1 centered in the origin, for which Ind(∆, D1) = 1.

• D2, the disk of radius 1 centered in (2, 0), for which Ind(∆, D2) = 1.

• D3, the disk of radius 2 centered in the origin, for which Ind(∆, D3) = 2.

In Figure 1 we collect convergence results for the contour integral computed via
(26) as the number of gridpoints n increases. The integral converges as expected
and the complex differentiation always performs better than finite-differences, even
with a relatively large value of δ. On the other hand the double complexification
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Figure 1: Convergence of the numerical computations of Ind(∆,D) for increasing number of sam-
pling points on ∂D. Blue curves refer to derivatives computed with finite-differences, red curves
to derivatives computed with complex differentiation. Top-left: two-dimensional example with
D = D1. Top-right: two-dimentional example with D = D2. Bottom-left: two-dimensional ex-
ample with D = D3. Bottom-right: four-dimensional example with D = D4. Two-dimensional
ODE integrations are computed with PERK4 and h = 0.006. Four-dimensional computation is with
PERK4 and h = 10−4. For complex differentiation we chose δ = 10−4.
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leads to prohibitively large systems in the case of 4 dimensions and higher and so
the centered finite difference is preferred in these cases.

Now apply the contour integration to the four-dimensional example (17). The
eigenvalues are all real, the lowest eigenvalue is λ1 ≈ 4.73, and the next eigenvalue is
far enough away that a unit circle contour around λ1 will contain only one eigenvalue.
A convergence study for the approximation of the unit circle contour integral is
shown in Figure 1. Hence the finite-difference approximation for the derivatives in
the contour is satisfactory, giving algebraic convergence.

9. Newton’s method and analyticity

Since q is non-analytic, the simplest approach to using Newton’s method is to
separate the real and imaginary parts and treat it as a map from R

2 to R2. Define
ϕ : R2 → R

2,

ζ := (Re λ, Im λ)T

ϕ(ζ) :=
(
Re q(λ, λ), Im q(λ, λ)

)T
.

The Newton sequence for q(λ, λ) = 0 is then

ζ [k+1] = ζ [k] − J−1
(
ζ [k]

)
ϕ

(
ζ [k]

)
k = 0, 1, . . . , (30)

where J is the Jacobian of ϕ.
To test this algorithm, it is applied to the Orr-Sommerfeld equation. Let ζ∗ =

(Re λ0, Im λ0)
T be a known root of q = 0 and perturb it. Namely we take ζ [0] ∈

∂Bρ(ζ
∗) where Bρ(ζ

∗) is the open ball centred in ζ∗ with radius ρ. In our codes we
are able to set ρ and to obtain a random direction for the perturbation.

Both ζ [k] and the value of the Jacobian need to be computed for the Newton
iteration. For a given ζ [k] (namely for a fixed λ) we integrate the Orr-Sommerfeld

equation restricted to the Stiefel manifold and from Q(1, λ, λ) compute ϕ
(
ζ [k]

)
.

The elements of the Jacobian are approximated with a standard second order
finite difference expression

∂ϕi

∂ζj

(ζ) ≈ ϕi(ζ + δζjej)− ϕi(ζ − δζjej)

2δζj

i, j = 1, 2 , (31)

where the parameters δζj can be chosen conveniently small.
In order to perform a single Newton step five function evaluations are required

(five integrations of the Orr-Sommerfeld equation). Figure 2 shows the convergence
for the Newton iteration ‖ϕ

(
ζ [k]

)
‖ = |q(λ[k], λ[k])| as a function of k. The algorithm

GLRK8 N gives the best result in terms of convergence and of course is the most
accurate in the integration of the Orr-Sommerfeld equation. As reported in Table 3,
the best approximation for the eigenvalue with R = 5772.2218, α = 1.020547 is c ≈
0.2640002080337, for which |q(λ, λ)| ≈ 10−32. Considering that the computations
have been performed in extended precision, this result represents a refinement of the
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the actual root of q . This essentially motivates our choice of high order GLRK
methods.
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Figure 1: Absolute value of q(λ, λ) versus Newton iterations for different integrators.
Parameters are the same as Table 1.

The lack of an analytic expression for ϕ leads us to approximate the Jacobian
with a standard second order finite difference expression

∂ϕi

∂ζj

(ζ) ≈
ϕi(ζ + δζjej)− ϕi(ζ − δζjej)

δζj

i, j = 1, 2 (7.6)

where the parameters δζj can be chosen conveniently small. In order to perform a
single Newton step we need therefore five function evaluations (five integration of the
Orr-Sommerfeld equation). Figure 1 shows the convergence for the Newton iteration
‖ϕ

(
ζ [k]

)
‖ = |q(λ[k], λ[k])| as a function of k . The algorithm GLRK8 N gives the best

result in terms of convergence and of course is the most accurate in the integration
of the Orr-Sommerfeld equation. As reported in Table 3, the best approximation
for the eigenvalue with R = 5772.2218, α = 1.020547 is c ≈ 0.2640002080337, for
which |q(λ, λ)| ≈ 10−32 . Considering that the computations have been performed in
extended precision, this result represents a refinement of the value c0 = 0.2640003
reported in [15]. As a consequence of what was mentioned above about the influence
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Figure 2: Absolute value of q(λ, λ) versus Newton iterations for different integrators. Parameters
are the same as Table 1.

value c0 = 0.2640003 reported in [15]. Both PERK4 N and GLRK4 N show a slower
convergence, and to a less accurate value of c. For instance the projection explicit
method gives c ≈ 0.264003, less accurate in the real as well as in the imaginary part.

9.1. Pseudo-Newton iteration

Since the codes PERK4 N and GLRKx N spend most of their time in evaluating the
Jacobian of (30), it is reasonable to implement their Pseudo-Newton (PN) versions.
This is obtained by computing the Jacobian every m iterations. More precisely the
iterations are

ζ [k+1] = ζ [k] − J
(
ζ [k′]

)−1
ϕ

(
ζ [k]

)
k = 0, 1, . . . (32)

where

k′ =

{
0 if k = 0

mb(k − 1)/mc+ 1 if k 6= 0

In our algorithms we set m = 2, so that the number of function evaluations (here in-
tegrations of the Orr-Sommerfeld equation) is considerably reduced. This, of course,
penalises the convergence of the method, as one can observe in figure 3. A direct
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of Stiefel integrators on Newton’s method, it is to be emphasized that both PERK4

N and GLRK4 N show a slower convergence, and to a less accurate value of c . For
instance the projection explicit method gives c ≈ 0.264003, less accurate in the real
as well as in the imaginary part. Since the codes PERK4 N and GLRKx N spend most
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Figure 2: Absolute value of q(λ, λ) versus Pseudo-Newton iterations for different
integrators. Parameters as in Table 1

of their time in evaluating the Jacobian of (7.5), it is reasonable to implement their
Pseudo-Newton (PN) versions. This is obtained by computing the Jacobian every m
iterations. More precisely the iterations are

ζ [k+1] = ζ [k] − J
(
ζ[k′]

)−1
ϕ

(
ζ [k]

)
k = 0, 1, . . . (7.7)

where

k′ =

{
0 if k = 0

m#(k − 1)/m$+ 1 if k %= 0

In our algorithms we set m = 2, so that the number of function evaluations (here in-
tegrations of the Orr-Sommerfeld equation) is considerably reduced. This, of course,
penalises the convergence of the method, as one can observe in figure 2. A direct
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Figure 3: Absolute value of q(λ, λ) versus Pseudo-Newton iterations for different integrators. Pa-
rameters as in Table 1

comparison between Newton and Pseudo-Newton iterations for GLRK8 is also in fig-
ure 4 and it is evident that the curve relative to Newton iterations is always well
below the Pseudo-Newton one. The third curve represents an attempt to treat q as a
pseudo-analytic function. This latter observation is a curiosity witnessed in the nu-
merics: that q near a zero of q behaves asymptotically like an analytic function. The
Pseudo-Newton scheme needs many more iterations to converge, but approximately
the same CPU time as the Newton one.

10. Concluding remarks

Questions associated with complex orthogonalization and analyticity have been
studied. The main new results are: (a) there is a continuum-infinite number of
ways to implement continuous orthonormalization; (b) there is a link with the
differential geometry of Stiefel bundles, and the simplest implementation of con-
tinuous orthonormalization corresponds to parallel transport; (c) the index of the
non-analytic Evans function (characteristic function) is the same including multi-
plicity as the complex analytic form; (d) the index can be efficiently computed with
the trapezoidal rule and numerical differentiation; (e) efficiency of GLRK meth-
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Figure 3: Convergence of q(λ, λ) for GLRK8 with Newton (N), Pseudo-Newton (PN)
and Newton with analyticity conjecture (AN). Parameters are the same as Table 1.

comparison between Newton and Pseudo-Newton iterations for GLRK8 is also in fig-
ure 3 and it is evident that the curve relative to Newton iterations is always well
below the Pseudo-Newton one. In the same graph there is a third curve, whose
meaning we will explain in the remainder of the section.

One can ignore the fact that q(λ, λ) is not analytic and proceed as if it is. Apply
Newton iteration directly to q(λ, λ) , rather than for ϕ(ζ) . Such iterations would
consist of

λ[k+1] = λ[k] −D−1
[k] q

(
λ[k], λ[k]

)
k = 0, 1, . . . (7.8)

but, as we will see, D[k] is not mathematically defined. Namely, this operator can
have a formal expression leading to a convergence to a fixed point for the map (7.8),
but due to the non analyticity of q , it is mathematically ill founded. Let us restrict
to the case when we are looking for eigenvalues on the real axis, as we have done
so far. Therefore it is reasonable to furnish a first guess λ[0] ∈ , then to define
p : → by p(λ) = q(λ, λ)

∣∣
λ∈

and finally to write the first iteration of (7.8) as

λ[1] = λ[0] −D−1
[0] p

(
λ[0]

)
. (7.9)
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Figure 4: Convergence of q(λ, λ) for GLRK8 with Newton (N), Pseudo-Newton (PN) and Newton
with analyticity conjecture (AN). Parameters are the same as Table 1.

ods for orthogonalization is intimately connected with how accurately the nonlinear
equations are solved at each step; (f) GLRK8 gives optimal results, both in term of
convergence of |q(λ, λ)| and of accuracy of the eigenvalue – indeed computed results
for Orr-Sommerfeld are more accurate than previous results in the literature; and
(g) Newton’s method applied to the non-analytic characteristic function is almost
as efficient as Newton’s method applied to the analytic form.
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