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Abstract

A Hopf bundle framework is constructed within Cn, in terms of which

general paths on Cn \ {0} are viewed and analyzed. The resulting hier-

archy of spaces is addressed both theoretically and numerically, and the

consequences for numerics and applications are investigated through a

wide range of numerical experiments.

The geometric reframing of Cn in this way - in terms of an intrinsic fibre

bundle - allows for the introduction of bundle-theoretic quantities in a

general dynamical setting. The roles of the various structural elements

of the bundle are explored, including horizontal and vertical subspaces,

parallel translation and connections. These concepts lead naturally to

the association of a unique geometric phase with each path on Cn \ {0}.
This phase quantity is interpreted as a measure of the spinning in the

S1 fibre of the Hopf bundle induced by paths on Cn \ {0}, relative to a

given connection, and is shown to be an important quantity.

The implications of adopting this bundle viewpoint are investigated in

two specific contexts. The first is the case of the lowest-dimensional

Hopf bundle, S1 → S3 → S2. Here the quaternionic matrices are used

to develop a simplified, geometrically intuitive formulation of the bundle

structure, and a reduced expression for the phase is used to compute nu-

merical phase results in three example systems. The second is the case

where paths in Cn \ {0} are generated by solutions to a particular class

of parameter-dependent first-order ODEs. This establishes a direct link

between the dynamical characteristics of such systems and the underly-

ing bundle geometry. A variety of systems are examined and numerical

phase results compiled. The numerics reveal an important correlation

between the spectral properties of the path-generating ODEs and the

resultant geometric phase change values. The details of this observed

link are recorded in a conjecture.
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Chapter 1

Introduction

This thesis explores the concept of geometrically reframing a class of dynamical

problems in order to expose and utilize elements of underlying structure. The focus

of the investigation is the Hopf bundle. This is an S1 fibre bundle, which may

be regarded as sitting within each copy of Cn \ {0}. Paths of vectors in Cn \ {0}
are described and analyzed in terms of this framework, giving rise to geometrical

elements rarely considered in the context of such paths, let alone in the context of

the dynamical systems which often generate them. The geometrical phase associated

with any such path is a measure of the motion induced within the S1 fibres of the

bundle by the path on Cn \ {0}; it is seen to be an important quantity. This work

addresses these concepts not only from a theoretical perspective, but also from a

numerical perspective, with emphasis placed on the practical computation of the

phase and other related numerical results.

1.1 Overview

The Hopf bundle S1 → S2n−1 → CP n−1 is a principal fibre bundle with fibre S1 and

total space S2n−1. Standard spherical projection maps paths in Cn \{0} to paths on

S2n−1, which may then be viewed in terms of this bundle structure. This procedure

provides a way of dividing up the motion of paths induced on S2n−1 in to motion on

the base manifold CP n−1 plus motion in the fibres S1. We are thus able to associate

bundle-theoretic quantities and characteristics with general paths on Cn \ {0}.
In order to fully describe motion induced within fibres, a connection is required.

This is a mathematical rule defining how to pass horizontally from fibre to fibre

within the bundle; it is essentially a way of calibrating motion in the fibres of the

bundle. This work develops all of these concepts in detail, showing precisely how

1



1.1 Overview

they fit together to culminate in the observation that each path in Cn \ {0} has

associated with it a unique phase quantity which describes the spinning in the fibres

induced by the motion on Cn \ {0}, relative to some given calibration. Often called

the geometric phase, this quantity can be thought of as an underlying geometric

“ticking-clock” mechanism associated with any such path. Of particular interest is

the phase change associated with closed paths in Cn \{0}. The choice of connection

is seen to be central to the calculation of the phase.

The lowest-dimensional (n = 2) case provides an opportunity to gain an intuitive

understanding of the geometrical structures in use here. In this case the bundle

is called the classical Hopf bundle, S1 → S3 → S2, and the spaces are of low

enough dimension for aspects of the geometry to be concretely visualizable. The

horizontal and vertical spaces of this bundle are described in terms of the well-

known quaternionic matrices, and this leads to simplified, explicit expressions for

all the geometric features considered.

The thesis then proceeds to consider the subject from a numerical perspective,

describing the development of several Matlab programs which compute the geomet-

rical phase for certain classes of paths in Cn \ {0}. Both the C2 case (using the

reduced quaternionic matrix formulation) and the general Cn case are addressed.

For most of the numerical phase calculations, the starting point is a system of the

form

ux = A(x, λ)u

x ∈ I ⊂ R, λ ∈ Λ ⊂ C, u ∈ Cn \ {0}, A ∈Mn(C) (1.1)

with given boundary conditions, where A(x, λ) is an n×n matrix depending analyt-

ically on λ and differentiably on x, and I and Λ are given subsets. The typical case

considered is when λ is an eigenvalue parameter, the x-domain is doubly-infinite

(I = R), and the matrix A(x, λ) is asymptotically constant w.r.t. x in both direc-

tions:

A∞(λ) := lim
x→±∞

A(x, λ) ∀λ ∈ Λ (1.2)

A number of paths in Cn \ {0} are defined with reference to this system, some

explicitly in terms of its solutions. Computation of the phase associated with such

paths creates a direct bridge between dynamical properties of the system and the

underlying bundle structure defined here. Initial numerical results lead to the central

conjecture of the thesis, which implies that computing the phase change associated

with a very specific form of closed path in Cn\{0} allows us to calculate the locations

of discrete eigenvalues λ of the system (1.1) used to generate that path.
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1.2 Background and motivation

The remainder of the thesis investigates numerical phase results in a range of sys-

tems associated with different physical problems, of varying dimension and asymp-

totic structure. Current research problems are addressed and the results, often

supportive of the central conjecture, are fascinating. These numerics constitute an

investigation of the Hopf fibre bundle and the induced phase in a numerical context.

1.2 Background and motivation

Eigenvalue/eigenfunction systems of the form (1.1), (1.2) arise frequently in a wide

range of applications, including hydrodynamics, quantum physics and physiology.

Linear systems such as these commonly result from the linearization of a nonlin-

ear system, for example during the linearization of a PDE about a solitary wave

solution. Such spectral problems have recently been addressed using exterior alge-

bra and the Evans function, to determine discrete eigenvalues which correspond to

bounded eigenfunctions, as described in [1]. The analyses involve (i) determining

the eigenvectors and eigenvalues of A∞(λ), (ii) selecting the most attractive and

most repellent eigenvectors (i.e. those corresponding to eigenvalues of most positive

and most negative real parts), (iii) integrating the system ux = Au separately from

each of these initial condition vectors along 1-dimensional spaces, and finally (iv)

applying a matching (Evans) function to the resulting solutions to determine the

admissibility of the solution as a whole. The details of this, the Evans function

method, are not relevant to this work, however the technique does illustrate the

importance of preferred subspaces in asymptotic problems like this. Indeed this

observation originally motivated many of the ideas of this thesis - specifically the

notion of using structures inherent to a problem to break up the system space in to

smaller spaces, such as 1-dimensional spaces, e.g. S1 fibres.

The Evans function method is applied in [2] and [3] to the stability analyses of

solutions in hydrodynamics, in [4] to the stability analysis of travelling wave solutions

of a KdV-Burgers equation, in [5] to the stability analysis of a Hocking-Stewartson

pulse solution to the complex Ginzburg-Landau equation, and in [6] to the stability

analysis of solutions of the fifth-order KdV equation.

A topic closely related to this work is the Berry phase in quantum mechanics,

although expositions of this concept deal exclusively in quantum systems, as seen

in [7], [8], [9] and [14].

3



1.3 The test-case

1.3 The test-case

Throughout the work we refer to the following system on C2, which we call the

“test-case”:

ux = A(x, λ)u, x ∈ R, λ ∈ Λ = C \ {(−∞,−1]}, u =

(
u1

u2

)
∈ C2 (1.3)

where

A(x, λ) =

(
0 1

λ+ 1− 2f(x) 0

)
(1.4)

f(x) =
3

2
sech2 1

2
x (1.5)

This system is derived from a PDE problem in quantum mechanics; it is of the

form (1.1), (1.2) and is amenable to analysis in the n = 2 classical Hopf bundle

framework as described above. It is analytically solvable and has isolated eigenvalues

λ = −3/4, 0, 5/4 and a continuous spectrum on the real axis along (−∞,−1] (which

explains the choice of Λ). The system-at-infinity is

A∞(λ) = lim
x→±∞

A(x, λ) =

(
0 1

λ+ 1 0

)
(1.6)

which has eigenvalues µ±(λ) = ∓
√
λ+ 1 with associated eigenvectors ξ±(λ) =(

1

∓
√
λ+ 1

)
. For the eigenvector of A∞(λ) corresponding to the eigenvalue of

most negative real part write

u∞(λ) = ξ+(λ) =

(
1

−
√
λ+ 1

)
(1.7)

Remark 1.3.1. As notation, for u ∈ Cn the complex conjugate transpose is written

uH := ūT , and the norm is |u| = (uHu)1/2.

1.4 Thesis outline

Broadly speaking, the first half of the thesis concerns theoretical developments, while

the second half concerns numerical investigations.

Chapter 2 is a review of fibre bundle theory. It is intuitive and geometric in

nature, with great emphasis placed on visualizing the various structures involved.

This approach is particularly appropriate given the numerical context of many of

the later results, and the consequent need for a solid geometrical interpretation.
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1.4 Thesis outline

Chapter 3 develops the Hopf bundle framework in detail, including local co-

ordinates, parallel translation and the natural connection. It sets out the logical

sequence of concepts leading to the precise description of the phase associated with

a path in Cn \ {0}, for both general paths and paths generated by solving linear

systems.

Chapter 4 considers the n = 2 classical Hopf bundle in closer detail. Simplified

expressions for bundle elements are derived in terms of the quaternionic matrices.

Connections are considered, and the natural connection is shown to be the only

connection in this bundle. A simplified expression for the phase is derived, again in

terms of the quaternionic matrices, and numerical phase results for three systems

are presented, the last of which is the test-case.

Chapter 5 focuses on numerically investigating phase results in the test-case

system, using the general n-complex-dimensional formulation (as opposed to the

quaternionic matrix description of the previous chapter). Three types of path in the

system space C2 are defined, referred to as γ1, γ2 and γ3 paths. Phases associated

with these types of paths are computed and the results discussed. This leads to

the central conjecture of the thesis. The chapter ends with some related numerical

results.

Chapter 6 extends the numerical investigations to cover three more systems: the

Hocking-Stewartson pulse system, the Rayleigh equation system and a Schrödinger

equation system. Numerical results for a large number of cases are presented and

discussed, with continual reference to the central conjecture.

Chapter 7 concludes the thesis by summarizing its results and achievements, and

discussing future work directions.

5



Chapter 2

Fibre bundle preliminaries - with

illustrations

We recall the basic facts of bundle theory on which this thesis is based and intro-

duce nomenclature. Several pictures are presented, which should be thought of as

analogies for the actual mathematical structures involved in the theory. Many of

the structures involved in bundles can be described in different but equivalent ways

mathematically (dual representations) and this duality is often easiest to understand

in the context of pictures of well-known geometrical structures.

2.1 Principal bundles

Let (P,M,G, π) be a principal fibre bundle with total space P over base manifold

M , with Lie group G acting on the right on P , and projection π : P → M . Let

q ∈ P , x = π(q) ∈ M , p ∈ π−1(x). Let the group right-action on P be denoted by

Φ:

Φ : G× P → P (2.1)

Φ(g, p) = Φg(p) = p · g (2.2)

We can think of the group as being an action which pushes points in the bundle

around the bundle along the fibres. Locally we can picture the situation as in Figure

2.1. Note that we only consider principal bundles in this work.

6



2.1 Principal bundles

{
P

base M

fibre G

x = π(p) = π(q)

Tπ(p)M

q
TqP

TqG

π

p Φg(p) = p · g

Φg

Figure 2.1: Visualizing a local representation of a principal bundle.

7



2.2 Horizontal spaces, vertical spaces and connections: the two
viewpoints

2.2 Horizontal spaces, vertical spaces and connec-

tions: the two viewpoints

2.2.1 The vector space viewpoint

At any point q, the tangent space TqP to the bundle can be decomposed naturally

in to two spaces, one tangent to the fibre, called the vertical subspace VqP , and one

transverse to the fibre, which, providing it satisfies certain conditions detailed below,

we call the horizontal space HqP . So we have the decomposition TqP = VqP ⊕HqP .

The vertical space is defined uniquely by

VqP = ker(π∗) (2.3)

where π∗ : TqP → Tπ(q)M is the push-forward of π, and it is clear how vertical

spaces at different points in the bundle are related - they just transform smoothly

with the fibre, since any parametrization of the fibre yields a parametrization of VqP .

However, there is in general no such unique way of describing the remaining space

in TqP once VqP is taken out. But this is something we need to do in order to relate

tangent spaces at different points in the bundle, and hence to define differentiation

processes on the bundle; this leads to the definition of horizontal spaces in the

bundle. The concept of the horizontal space HqP is a way of describing these left-

over spaces, of dimension [dim(TqP )− dim(TqG)], in TqP once the vertical space is

taken out, which varies smoothly in the bundle, i.e. it gives us a consistent way of

moving from fibre to fibre through the bundle. For principal bundles, in addition to

being smoothly-varying, we require that HqP is invariant under the group action.

The assignment of such horizontal spaces is called a connection in a bundle:

Definition 2.2.1. A connection in a principal bundle is a smoothly-varying assign-

ment to each point q ∈ P of a subspace HqP of TqP such that

(i) TqP = VqP ⊕HqP ∀q ∈ P (2.4)

(ii) (Φg)∗(HqP ) = HΦg(q)P ∀g ∈ G, q ∈ P (2.5)

Figure 2.2 illustrates the situation. The first condition says that HqP must

be transverse to the fibre (which is necessary in order for it to span the rest of

TqP ). The second condition says that if we use (Φg)∗ to “push” HqP ⊂ TqP along

the fibre, then the result is the same as if we first push q along the fibre using

Φg to the point Φg(q) and then form the subspace HΦg(q)P at that point. (Note

8



2.2 Horizontal spaces, vertical spaces and connections: the two
viewpoints

{
P

M

x = π(q) = π(q · g)

Tπ(q)M ∼= HqP

q

VqP = TqG = ker(π∗)

π∗ : VqP → 0

q · g
Φg

Vq·gP

HqP

{
TqP = VqP ⊕HqP Hq·gP = (Φg)∗(HqP )

(Φg)∗

G

π∗ : HqP → Tπ(q)M

Figure 2.2: Horizontal spaces.
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2.2 Horizontal spaces, vertical spaces and connections: the two
viewpoints

(Φg)∗ : TqP → TΦg(q)P is the push-forward of Φg.) So a connection in a principal

bundle is just a right-invariant distribution on the bundle which is transverse to the

fibre at each point.

Remark 2.2.1. An equivalent condition to condition (i) above is

(i) π∗(HqP ) = Tπ(q)M ∀q ∈ P (2.6)

This just says that the dimension of HqP has to be great enough to fill up the

rest of TqP completely once TqG is taken out: since π∗ maps TqG to zero, and

locally the bundle is a product space, the image of HqP under π∗ must have the

same dimension as Tπ(q)M (i.e. they are isomorphic).

2.2.2 The differential form viewpoint

Now, since the bundle group is a Lie group, there is a canonical identification of the

tangent space to the fibre at each point q with the Lie algebra g of G, so we can

write TqG ∼= g, which leads to the following differential-form-based description of a

connection.

From Figure 2.2 it is clear that a choice of HqP in fact defines a projection of

TqP on to TqG, and hence on to g. Figure 2.3 shows this explicitly: V is a vector in

TqP which is projected via HqP to a vector in VqP . This is also intuitively clear for

higher dimension situations, not only that pictured, since we are just dealing with

intersections of linear spaces. We thus have a linear map TqP → g, i.e. a g-valued

differential 1-form on P , with kernel HqP . This representation of a connection as a

differential form is called a connection 1-form, but we need a few more definitions

before we can describe it fully: let g ∼= TeG be the Lie algebra of G, where e is the

identity in G, let XL(G) be the set of all left-invariant vector fields on G. Take ξ ∈ g.

Let Xξ ∈ XL(G) be the unique left-invariant vector field on G corresponding to ξ,

i.e. such that Xξ(e) = ξ. Each ξ ∈ g induces a flow on P . Let gξ(t) be the unique

integral curve of Xξ passing at t = 0 through e ∈ G, then gξ(t) is a one-parameter

subgroup of G.

Definition 2.2.2. The exponential map exp : g→ G is defined by

exp(ξ) = gξ(1) (2.7)

and it can be shown that

exp(tξ) = gξ(t) ∈ G (2.8)

Figure 2.4 gives an idea of how these objects can be represented geometrically.

10



2.2 Horizontal spaces, vertical spaces and connections: the two
viewpoints

q VqP

HqP

{

TqP = VqP ⊕HqP

G

V

Figure 2.3: Using HqP to project V ∈ TqP on to VqP .

Definition 2.2.3. The infinitesimal generator of the action Φ, corresponding to ξ,

is a vector field ξP on P defined by

ξP (q) =
d

dt
Φ(gξ(t), q)

∣∣∣
t=0

(2.9)

and so for Φ(g, q) = q · g we get

ξP (q) =
d

dt
Φ(gξ(t), q)

∣∣∣
t=0

(2.10)

=
d

dt

(
q · gξ(t)

)∣∣∣
t=0

(2.11)

=
d

dt

(
q · exp(tξ)

)∣∣∣
t=0

(2.12)

= q ξ (2.13)

and we can now proceed to the formal definition of a connection 1-form on a principal

bundle:

Definition 2.2.4. A connection 1-form on P is a g-valued 1-form ωq : TqP → g,

satisfying, for each q ∈ P ,

(i) ωq(ξP (q)) = ξ ∀ξ ∈ g (2.14)

(ii) ωΦg(q)([(Φg)∗
∣∣
q
]V) = Adg(ωq(V)) ∀V ∈ TqP, ∀g ∈ G (2.15)

11



2.2 Horizontal spaces, vertical spaces and connections: the two
viewpoints

{

P

base M

fibre G

x = π(p)

e

TeG ∼= g

g

p

p · g
Φg

Φg

left− invariant vector field Xξ

Xξ(e) = ξ ∈ g

e

ξ ∈ g

1−parameter subgroup gξ(t)

e

Xξ

gξ(t)

exp(ξ) = gξ(1)

exp : g→ G

(the integral curve of Xξ)

Figure 2.4: A right-action on a principal fibre bundle.
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2.2 Horizontal spaces, vertical spaces and connections: the two
viewpoints

Adg : g → g is the adjoint action at g ∈ G (i.e. the derivative of conjugation,

evaluated at e), which in our case will only ever be given by

Adg(σ) = g−1σg g ∈ G, σ ∈ g, (2.16)

which holds for matrix groups. So condition (ii) becomes:

ωΦg(q)([(Φg)∗
∣∣
q
]V) = Φ−1

g (ωq(V))Φg ∀V ∈ TqP, ∀g ∈ G (2.17)

We can visualize this as in Figure 2.5, which we can very loosely think of as: if

you apply ωqg to the tangent vector ((Φg)∗V) at q · g ∈ P , then this is the same

as if you start at q · g ∈ P , then transform back along the fibre under g−1 then

apply ωq to the tangent vector V at the original point q, then transform forwards

along the fibre under g returning to q · g. This characterization of the connection,{
P

M

x = π(q) = π(q · g)

Tπ(q)M ∼= HqP

q

VqP
q · g

VΦgqP

HqP

{
TqP HΦgqP

(Φg)∗

G

V ωq

ωΦgq

(Φg)∗V

Figure 2.5: G-invariance of the connection form.

which is essentially based on tangent covectors, is just the representation dual to
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2.3 Parallel translation

the previous one (Definition 2.2.1), which is essentially based on tangent vectors.

Notice in particular the duality between equations (2.5) and (2.17).

Remark 2.2.2. If we do not need to specify the point at which a connection form

is evaluated, we may denote it by just ω instead of ωq.

References [10]- [15] provide good material on manifolds and bundles.

2.3 Parallel translation

In the context of all these diagrams depicting horizontal subspaces, the notions of

horizontality and parallel translation become very easy to understand. Suppose we

now have a path in the bundle given by t 7→ q(t) ∈ P with t ∈ [c, d] ⊂ R.

Definition 2.3.1. Path q(t) ∈ P is horizontal w.r.t. a given connection if the tan-

gent vector q̇(t) lies in the horizontal subspace determined by the connection, Hq(t)P ,

for each t.

Remark 2.3.1. Recall, horizontal subspaces are by definition in the kernel of the

associated connection 1-form ω, so path q(t) is horizontal w.r.t. ω iff ω(q̇(t)) = 0 ∀t.
i.e. the projection of the tangent vector q̇(t) on to the vertical space at q(t) is zero,

at every point of the path.

Figure 2.6 illustrates a horizontal path: q(t) is a path through bundle P , and at

each of the three points q(t1), q(t2), q(t3) the tangent space to the bundle is depicted

(as a dashed-line box), along with the horizontal and vertical subspaces Hq(ti) and

Vq(ti). Also shown are the tangent vectors to the path at the three points - these

tangent vectors lie in the horizontal subspaces, representing the horizontal nature

of the path. Now, since there is in general some flexibility in the choice of hori-

zontal spaces in a bundle (subject to the conditions of the definition), a path can

be horizontal w.r.t. one connection while simultaneously being not horizontal w.r.t.

another. In Figure 2.6, we would represent a connection w.r.t. which q(t) is not

horizontal by tilting the horizontal space inside one or more of the “tangent space

boxes” by some angle (or angles), since then the tangent vectors would not lie inside

the horizontal spaces for every t.

Now, if path q(t) is not horizontal w.r.t. a given connection ω, then we can derive

an expression which describes how far it deviates from being horizontal. We do this

by considering the separation, in the fibre, between q(t) and a second path, q̂(t),

which starts at the same point q(c) = q̂(c) in the bundle, and is horizontal. Any

14



2.3 Parallel translation

{
P

M

q(t1)

Vq(t1)PHq(t1)P

G
G

G

π(q(t3))
π(q(t1))

π(q(t2))

Path π(q(t))

Vq(t2)P
Vq(t3)P

Hq(t2)P

Hq(t3)P

q(t2)
q(t3)

q̇(t)
∣∣∣
t=t1

q̇(t)
∣∣∣
t=t2

q̇(t)
∣∣∣
t=t3

Path q(t)

Figure 2.6: A horizontal path q(t) through principal bundle (P,M, π,G).
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2.3 Parallel translation

path in bundle P which maps, under π, to the same path on base M as does q(t) is

called a lift of q(t). If a lift of q(t) is horizontal w.r.t. ω then it is called a horizontal

lift of q(t), and translating (i.e. evaluating) some quantity along a horizontal path

(as opposed to a non-horizontal path) is called parallel translation. So q̂(t) is a

horizontal lift of q(t) and we analyze it as follows. Using local coordinates for the

local product structure in the bundle, every point on path q̂(t) can be written as

the product of the point q(t) and some element of the fibre, say a ∈ G. But since

this is the case for every point along the path, we get a whole curve a(t) ∈ G which

measures the difference between the two curves in the bundle:

q̂(t) = q(t)a(t) (2.18)

We can think of a(t) as a sort of “fine-tuning” variable, which, when varied by

the right amount as q(t) proceeds along its course, enables us to shift q̂(t) around

the fibre exactly the right amount necessary for it to remain horizontal. a(t) will

then be an expression describing how much q(t) deviates from being horizontal. To

obtain the equation which governs this required motion in the fibre, we differentiate

(2.18) w.r.t. t, apply the connection form ω, then use the horizontal and right-

equivariance conditions, ‘ω( ˙̂q(t)) = 0’ and (2.17) respectively. This yields the first-

order differential equation for a(t):

ȧ(t)a−1(t) = −ω(q̇(t)) (2.19)

with a(c) = e required to satisfy q(c) = q̂(c). Detailed derivations of this equation are

given in [12] (p.69), [13] (p.265) and [17] (p.364). This equation shows us precisely

how a(t) must vary as we move along q(t) in order for q̂(t) to be the unique horizontal

lift starting at q(c). We summarize the concepts of horizontal lifts and parallel

translation in Figure 2.7.

Remark 2.3.2. This method for generating horizontal paths also applies for paths

q̂(t) which start at points in the fibre attached to q(c), other than q(c) itself. This

just involves taking the initial condition a(c), for (2.19), to be some value other than

the identity in G, and would be represented on Figure 2.7 by sliding the path q̂(t) up

the fibre G so that q(c) and q̂(c) are separated by a value a(c) in the fibre.

Remark 2.3.3. It is important to remember that the diagrams in this chapter are

merely pictorial analogies for the mathematical objects involved. In particular, fibres

are always pictured here as being 1-dimensional, when in reality they can be of any

dimension. For example, in Figure 2.7, the shift in the fibre is portrayed as being a
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2.3 Parallel translation

{
P

M

q(c) = q̂(c)

G

G
G

π(q(c))

Path π(q(t))

q(d)

q(t)

˙̂q(t)
∣∣∣
t=d
∈ Hq̂(d)P

q̂(d)

π(q(d))

q̂(t)

π(q(t))

a(t)a(d)

˙̂q(t) ∈ Hq̂(t)P

q̇(t) /∈ Hq(t)P

q̇(t)
∣∣∣
t=d

/∈ Hq(d)P

Path q(t)

Path q̂(t)

(horizontal)

(not horizontal)

Figure 2.7: Generating a horizontal path q̂(t) from a non-horizontal path q(t) by

applying a shift a(t) in the fibre.
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2.3 Parallel translation

simple shift up or down the fibre, but really the shift a(t) is a path in the group G,

whatever that may be.

This concludes our review of fibre bundles, and our collection of very clear dia-

grams showing previously uncollated ways of thinking about the basic geometry of

fibre bundles.
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Chapter 3

The Hopf bundle: parallel

translation, the natural connection

and the phase

In this chapter we introduce and analyze the concept which essentially underpins

this thesis: namely that whenever we have a path in Cn \ {0}, such as a solution

to a system of ODEs, if we regard Cn as the highest-dimensional space in a natural

hierarchy of spaces, then this path induces motion on smaller structures inside Cn.

Deconstruction of paths in this way is possible by viewing trajectories in Cn in

terms of a fibre bundle, and applying various concepts from bundle theory to analyze

motion on the induced structures.

This perspective of looking inside spaces to see how trajectories induce motion

on smaller spaces under various fibrations or projections has not received a great

deal of attention in the literature, as it is often assumed that the whole story of

an ODE system is contained in the manifold on which solutions lie. However, this

is not always the case, as we demonstrate in this work. The one main exception

to the lack of attention the subject has received is in the context of Berry phases

in quantum mechanics, due to the centrality of projection operators in the theory.

Such work tends to operate exclusively in the language of quantum mechanics, which

gives the treatment a very different feel to that presented here, and yields what is

arguably a less accessible approach to the concept. This presentation is intended to

be a relatively straight-forward approach, of relevance in a general ODE/dynamical-

systems context.
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3.1 Motivation

3.1 Motivation

The idea of looking at projections of paths is largely motivated by the eigensystem

(1.1) introduced in Chapter 1. The key observation is that

in this eigensystem context, each solution eigenvector u in fact represents

a whole equivalence class [u] of valid solutions, related by complex scalar

multiplication, each with the same eigenvalue.

So if u is a solution, then so is cu for any complex c = reiθ. Hence each solution

u contains information superfluous to its role as an eigenvector, but which is nev-

ertheless present in standard analyses: a magnitude factor r and a phase factor θ.

Therefore a natural space on which to consider solutions to this system is in fact

complex projective space CP n−1, and of special interest is how the “extra” informa-

tion behaves if we move along paths of eigenvectors in Cn. To investigate this we

combine standard spherical projection with projection by the Hopf map.

3.2 The Hopf map

The Hopf map is defined as the projection π : S2n−1 → CP n−1 which sends each

z ∈ S2n−1, written as a complex n-tuple, to the point in CP n−1 with corresponding

homogeneous coordinates:

z = (z1, z2, . . . , zn) 7→ [z1, z2, . . . , zn] (3.1)

∈ S2n−1 ⊂ Cn ∈ CP n−1

It can be proved, by exhibiting an atlas of bundle charts which satisfy the conditions

required in the definition of a fibre bundle, as in [16], that this map is the projection

map of a principal U(1)-bundle with base CP n−1 and total space S2n−1:

U(1) → S2n−1

↓ π
CP n−1

where U(1) is the first unitary group: complex numbers of absolute value 1, under

multiplication. This is the Hopf bundle. For n = 2 this gives the well-known classical

Hopf bundle S1 → S3 → S2 (since CP 1 ' S2), but the term “Hopf bundle” is also

used to refer to higher-dimensional cases. In terms of the notation of Chapter 2, we

now have P = S2n−1, M = CP n−1, G = U(1) and g = iR.
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3.2 The Hopf map

Remark 3.2.1. For n = 2 we can write the Hopf projection explicitly as

π : C2 ⊃ S3 → S2

(z1, z2) 7→ π(z1, z2) =
(
z1z2 + z1z2 , i(z1z2 − z1z2) , |z1|2 − |z2|2

)

Then by direct calculation we have

|π(z1, z2)|2 =
(
|z1|2 + |z2|2

)2
(3.2)

so that

(z1, z2) ∈ S3 ⇒ π(z1, z2) ∈ S2 (3.3)

and each point on S3 ⊂ C2 is indeed mapped by π to a point on S2 ⊂ R3. Further-

more, for eiθ ∈ U(1),

π
(
eiθ(z1, z2)

)
= π

(
(eiθz1, e

iθz2)
)

= π
(
(z1, z2)

)
,

so π is easily seen to be U(1)-invariant as required.

Further information on the Hopf map may be found in many standard texts, such

as [19]- [22]. We have introduced the Hopf bundle here using the traditional complex

number z notation, as is common, because it is a very natural way to describe the

progression from complex numbers to complex projective space. However, since we

now proceed to consider dynamics in the bundle, we switch to a more dynamical-

system oriented notation, using letters v and w for points in S2n−1, again written as

complex n-tuples.

Take v ∈ S2n−1 ⊂ Cn. In terms of a Hopf bundle structure, v can be represented

locally as a point in the product space S1 × CP n−1: if v = eiθw, where w ∈ S2n−1

and θ ∈ R, then v is represented by the pair (eiθ, [w]), with [w] ∈ CP n−1. So both w

and eiθw are points on S2n−1, and in these coordinates, the projection map is just

π : S2n−1 → CP n−1

eiθw 7→ [w] (3.4)

In other words, for each element [w] ∈ CP n−1 we have a complete S1-fibre of points in

S2n−1 which all map to the same point in the base. The quantity θ parametrizing the

fibres is called the phase, and it is a way of measuring the separation between points

in S2n−1 which correspond to the same point in CP n−1. Note that since the vertical

vectors of a bundle are defined to be vectors tangent to the fibres, parametrizing

the fibres by θ in this way means that the vertical vectors may be referred to as just

span{ ∂
∂θ
}. We now show how the Hopf map can be used to analyze paths in Cn.
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3.3 A hierarchy of spaces

3.3 A hierarchy of spaces

The basic idea is to take a path of points in Cn \{0} and project these points firstly

on to the unit sphere S2n−1 inside Cn, then on to projective space CP n−1 inside

S2n−1 using the Hopf map. In doing so we are choosing to reframe the system in

terms of a fibre bundle, essentially dividing up motion along a path on S2n−1 in to

a CP n−1 component and an S1 component. Although we consider only the Hopf

S1-bundle structure throughout this work, other fibres could potentially be used to

extend the concept in other ways.

Thus we have a natural hierarchy of spaces on which paths of vectors are con-

sidered (with our choice of variables listed on the left for easy reference):

(u ∈) Cn ∼= R2n

↓
(u ∈) Cn \ {0}

↓
(v, w ∈) S2n−1

↓
([v], [w] ∈) CP n−1

(3.5)

Any path on Cn\{0}may be projected on to the spaces beneath it, and the behaviour

of the induced paths investigated. Figure 3.1 illustrates the situation for n = 2, with

C2 viewed as R4, spherical projection denoted by P and one dimension suppressed.

The rest of this chapter details how to use the Hopf bundle structure to “extract”

an S1 phase factor from paths in Cn \ {0}; and also how, if we have a system of

equations which generates paths on Cn \ {0}, then using these projections we can

derive systems induced on the lower spaces and characterize the role of the phase

factor in the resulting dynamics.

3.4 Parallel translation in the Hopf bundle

As shown in Section 2.3, given a parametrization of the local product structure of a

bundle, we can write down the condition for parallel translation in the bundle w.r.t.

a given connection, in terms of that connection 1-form (equation (2.19)). We do

this now for the Hopf bundle, with the natural parametrization v = eiθw.

Let x ∈ R be a path-parametrization variable, say x ∈ [x0, x1] ⊂ R, then let v

depend on x so that v(x) is a path on S2n−1. In order to show how different paths on

S2n−1 are related by the phase during motion, let the local coordinate representation

on S1×CP n−1 depend on the path-parameter also: let θ ∈ R depend on x and write
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3.4 Parallel translation in the Hopf bundle

π : S3 → S2

u(x) ∈ R4

P : R4 → S3

π

v(x) = u(x)
‖u(x)‖ ∈ S3

S3

S2

NB: ambient space R4

NB: ambient space R3

π(v(x)) ∈ S2

π

P

Figure 3.1: illustration of the projection sequence π ◦ P : R4 → S3 → S2
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3.4 Parallel translation in the Hopf bundle

v(x) = eiθ(x)w(x), where w(x) is also a path on S2n−1. Since v and w are both paths

of points on the sphere, which correspond to the same points in CP n−1, and the local

coordinates for the fibre and the base are now x-dependent, this equation effectively

separates motion in the fibre from motion on the base manifold.

Equation (2.19) and the related discussion then imply that w(x) is horizontal

w.r.t. a connection ω iff

[ d
dx

(e−iθ(x))
]
eiθ(x) = −ω(vx) (3.6)

⇔ θx(x) = −iω(vx) (3.7)

This then is the general equation which tells us how, as x goes from x0 to x1, θ(x)

must vary as v(x) moves around the sphere in order for w(x) to remain horizontal

w.r.t. ω.

Remark 3.4.1. Taking a step back for a moment, a 1-form is loosely-speaking

just an object whose “purpose” is to be integrated along some 1-dimensional space.

Therefore, the obvious question to ask of any connection 1-form ω on a bundle is -

what does integration of the 1-form along various paths in the bundle yield? Well,

equation (3.7) provides the answer to this question for the Hopf bundle:

integration of a connection 1-form along a path on S2n−1 gives precisely

i times the phase curve required to maintain horizontality of the path on

S2n−1 obtained via the local product structure given above.

The interesting aspect of this interpretation of the path-integral of a connection form

is that it is entirely dependent on the specific local product structure considered here.

Other local coordinates for the group action will in general lead to more complicated

expressions on the LHS of equation (3.7) because terms will not cancel so neatly,

and in general a clear interpretation such as this will not be possible.

Now, in considering what this equation reveals in any practical situation, there

are clearly two issues to face: firstly, what is the connection form ω to be used in

the equation? And secondly, what is the path v(x) whose tangent vector vx(x) is to

be used in the equation? We consider the issue of the path v(x) shortly in Section

3.6, but first we describe the natural connection form on the Hopf bundle, which is

the connection form of primary interest in this thesis.
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3.5 The natural connection on the Hopf bundle

3.5 The natural connection on the Hopf bundle

Using the notation of Chapter 2, so as to maintain the distinction between a point

on a manifold and a tangent vector to the manifold at that point, we have

Definition 3.5.1. For q ∈ S2n−1 and V ∈ TqS
2n−1 vectors in Cn, the natural

connection on the Hopf bundle is given by ωq(V) = qHV.

3.5.1 Verifying the natural connection

To verify that the natural connection form is in fact a valid connection form, we

check that it is a Lie-algebra-valued 1-form on S2n−1 which satisfies properties (i)

and (ii) of Definition 2.2.4. Take q ∈ S2n−1, V ∈ TqS
2n−1, and let ωq(V) = qHV.

Now since V is a tangent vector to the sphere S2n−1 ⊂ Cn it can be expressed in the

form

V = (I − qqH)w + iαq for some α ∈ R, w ∈ Cn (3.8)

This equation concerns the projection of a vectorfield on to the tangent space

TqS
2n−1; this is a special case of projection on to the tangent space of a Stiefel

manifold, as seen in [23] and [24] in the context of continuous orthogonalization

of linear systems of ODEs. Applying the connection form to the tangent vector V

written in this form then gives

ωq(V) = qHV = qH [(I − qqH)w + iαq] (3.9)

= (qH − qHqqH)w + iαqHq (3.10)

= (qH − qH)w + iα since qHq = 1 (3.11)

= iα (3.12)

and so ωq does map tangent vectors to the Lie algebra iR as required, ωq : TqS
2n−1 →

g. Now to verify properties (i) and (ii) of Definition 2.2.4:

• (i): As shown in (2.13), for right action Φ, and for any given ξ ∈ g and

q ∈ S2n−1, the infinitesimal generator is given by ξP (q) = qξ, and so

ωq(ξP (q)) = ωq(q ξ) = qHq ξ = ξ (3.13)

as required.
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3.5 The natural connection on the Hopf bundle

• (ii): Now let γ(s) be a path in S2n−1 s.t. γ(0) = q, with tangent vector V at

q, i.e.

V =
d

ds
γ(s)

∣∣∣
s=0

(3.14)

Then the action of U(1) on γ(s) is

Φg(γ(s)) = γ(s) · g (3.15)

so that

[(Φg)∗
∣∣
q
] V = [(Φg)∗

∣∣
q
]
( d
ds
γ(s)

∣∣∣
s=0

)
(3.16)

=
d

ds
Φg(γ(s))

∣∣∣
s=0

(3.17)

=
d

ds
(γ(s) · g)

∣∣∣
s=0

(3.18)

=
( d
ds
γ(s)

∣∣∣
s=0

)
g (3.19)

= Vg ∀g ∈ U(1) (3.20)

and hence

ωΦgq([(Φg)∗
∣∣
q
]V) = ωq·g(Vg) (3.21)

= (qg)H(Vg) (3.22)

= gHqHVg (3.23)

= g−1(qHV)g since g ∈ U(1) here (3.24)

= Adg(ωq(V)) (3.25)

as required.

Therefore the natural connection form is indeed a valid connection form.

3.5.2 The natural connection along a path

Now returning to the case of a path of vectors v(x) =




v1(x)
...

vn(x)


 ∈ S2n−1 ⊂ Cn,

the natural connection form at points along the path may be written as

ω = vHdv (3.26)

= Re(vHdv) + i Im(vHdv) (3.27)
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3.6 Evaluating the phase along paths in the Hopf bundle

But, as can be verified directly by writing v1 = (x1 + iy1), . . . , vn = (xn + iyn), the

condition ‖v‖ = 1 implies that

Re(vHdv) = 0 (3.28)

so that

ω = i Im(vHdv) (3.29)

Then since v = u/‖u‖, we can write ω in terms of vectors in the space at the top of

the hierarchy, Cn, so that paths of vectors in Cn immediately generate the associated

natural connection 1-forms on S2n−1:

ω = i Im(vHdv) = i
Im(uHdu)

(uHu)
(3.30)

Note that vHdv and uHdu are entirely different objects: the former has zero real

part while the latter generally does not; writing ω as in (3.30) simply provides a

straightforward way of expressing the connection in terms of u.

3.5.3 Parallel translation w.r.t. the natural connection

Updating equation (3.7) so as to refer specifically to the natural connection we have

that w(x) is horizontal w.r.t. ω iff

θx(x) = −ivHvx = Im(vHvx) (3.31)

3.6 Evaluating the phase along paths in the Hopf

bundle

Now, taking account of

• the hierarchy of spaces and projections defined here,

• the parallel translation condition (3.7) and

• the natural connection form (3.30),

we see that associated with each path of vectors u(x) in Cn \ {0} is a unique phase

curve θ(x), which describes the deviation from horizontality w.r.t. the natural con-

nection, in the Hopf bundle, of the projection of the path u(x) on to the real sphere

S2n−1 inside Cn. The calculation and observation of this phase curve θ(x) occupies
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3.6 Evaluating the phase along paths in the Hopf bundle

a central role in the numerical investigations in the latter part of this thesis; we

therefore now show explicitly how to obtain the phase curve for a general path in

Cn \ {0}, then describe the particular case when the path is governed by a linear

system of ODEs on Cn \ {0}.

3.6.1 The phase calculation for a general path in Cn \ {0}
Denote by γ̂ a general path R ⊃ [x0, x1] → Cn \ {0}. Take x ∈ [x0, x1], and let the

path be given by u(x) = (u1(x), . . . , un(x)) in standard coordinates. Let γ denote

the path [x0, x1] → S2n−1 obtained by spherical projection. Write the connection

form on S2n−1 as ω = f(u)du in standard coordinates, as in (3.30). Then the integral

of the connection form along the induced path γ on S2n−1 is calculated by pulling

back the connection form to the real line and evaluating the ordinary integral there:
∫

γ

ω =

∫

[x0,x1]

(γ)∗ω (3.32)

=

∫ x1

x0

(
f(u(x))

du

dx

)
dx (3.33)

=

∫ x1

x0

(
i

Im(uHux)

(uHu)

)
dx (3.34)

and hence, by (3.7),

the phase curve θ(x) associated with path γ̂ is given by

θ(x) =

∫ x

x0

(Im(u(s)Hus(s))

(u(s)Hu(s))

)
ds (3.35)

This equation, around which much of this thesis centres, is important because it

reveals how, with each path γ̂ in Cn \ {0}, is associated an implicit dynamical S1

phase factor, with a fundamental geometrical significance. An exposition of the

same mathematical object, in the context of the quantum geometric phase, may

be found in [14], p.204. The accuracy of any numerical solution to equation (3.35)

will depend directly on the accuracy of the expressions used for u and ux. We now

consider the special case where ux is known precisely, through its relationship with

u, by choosing u to be the solution to a system of ODEs on Cn \ {0} as follows.

3.6.2 The phase calculation for paths induced by ux = Au

Suppose we have the linear system of ODEs

ux = Au, u(x) ∈ Cn \ {0}, x ∈ R, A ∈Mn(C), u(0) = u0 (3.36)
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3.6 Evaluating the phase along paths in the Hopf bundle

where Mn(C) denotes the set of all n×n complex matrices. This induces a system on

the sphere inside Cn \{0}; we derive this system, then use local product coordinates

in the Hopf bundle to show how the phase motion on S1 is manifested in this case.

3.6.2.1 Projecting on to the sphere

Let u(x) be the solution to (3.36). Projection of this path on to S2n−1 is of course

given by:

v(x) =
u(x)

‖u(x)‖ ∈ S
2n−1 ⊂ Cn (3.37)

Remark 3.6.1. Visualizing this projection is possible by imagining u(x) as a path in

real 2n-dimensional space, which is then projected on to the sphere S2n−1 embedded

in R2n, in analogy with either of the R3 → S2 or R2 → S1 cases, which are intuitively

clear.

The evolution of v(x) is then calculated as follows

vx =
( u

‖u‖
)
x

(3.38)

=
ux
‖u‖ + u

[
(uHu)−1/2

]
x

(3.39)

=
ux
‖u‖ + u

(−1

2

)
(uHu)−3/2(uHx u+ uHux) (3.40)

=
Au

‖u‖ − 1

2

u

‖u‖
1

‖u‖2

[
(Au)Hu+ uH(Au)

]
by (3.36) (3.41)

=
Au

‖u‖ − 1

2

u

‖u‖

[
uH

‖u‖A
H u

‖u‖ +
uH

‖u‖A
u

‖u‖

]
(3.42)

= Av − 1

2
v[vHAHv + vHAv] by (3.37) (3.43)

= Av − v Re(vHAv) since
1

2
(z + z) = Re(z) (3.44)

so the trajectory v(x) induced on S2n−1 by (3.36) satisfies

vx = Av − v Re(vHAv) (3.45)

or, writing vHAv = Re(vHAv) + i Im(vHAv),

vx = (I − vvH)Av + iv Im(vHAv), (3.46)

which will be of use shortly because of the way the RHS splits in to real and complex

parts.

29



3.6 Evaluating the phase along paths in the Hopf bundle

3.6.2.2 Projecting on to CP n−1 and the dynamics of the phase

Next write points of the trajectory v(x) ∈ S2n−1 in terms of their local coordi-

nate representation on S1 × CP n−1 again: v(x) = eiθ(x)w(x), then differentiate this

expression w.r.t. x and substitute the sphere dynamics equation (3.46):

v(x) = eiθ(x)w(x) (3.47)

⇒ wx = (e−iθ(x)v(x))x (3.48)

= e−iθvx − ie−iθθxv (3.49)

= e−iθ[(I − vvH)Av + iv Im(vHAv)]− ie−iθθxv by (3.46) (3.50)

= (I − wwH)Aw + iw Im(wHAw)− iwθx since vHAv = wHAw

= (I − wwH)Aw + iw(Im(wHAw)− θx) (3.51)

This equation then describes how the dynamics induced by (3.36) on CP n−1 are

coupled to the dynamics induced within fibres: it shows explicitly how, given the

trajectory v(x), the dynamics of θ(x) affects paths of points w(x) in the same equiv-

alence classes, [v(x)]. Figure 3.2 illustrates the situation, and the following points

are emphasized:

• For x ∈ [x0, x1] ⊂ R, both v(x) and w(x) are paths in S2n−1.

• The path v(x) has initial condition v(x0) and is determined by equation (3.46).

• At each point of the path v(x), there is a whole S1-fibre of points w(x) =

e−iθ(x)v(x) which map to the same point on the base CP n−1.

• The path w(x) has initial data {v(x0), θ(x0)} and is determined by equation

(3.51) including the expression θx(x).

• θx(x) is of course arbitrary: we can choose any function we like. It defines

how, as v and w move through S2n−1 simultaneously, w moves around in the

fibre attached to v. This function represents a choice of how to move from

fibre to fibre through the bundle.

• If we pick θx(x) = 0 then equation (3.51) for w(x) is the same as equation

(3.46) for v(x), so that v and w follow paths on S2n−1 governed by the same

equation, and just stay separated by a constant phase θ(x0). i.e. if v and w are

separated by a constant phase θ(x0) at x = x0 then they will remain separated

by phase θ(x0) for all x.
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3.6 Evaluating the phase along paths in the Hopf bundle

v(x0)

π

v(x1)

w(x0) = e−iθ(x0)v(x0)

vx = (I − vvH)Av + iv Im(vHAv)

wx = (I − wwH)Aw + iw(Im(wHAw)− θx)

π(v(x0)) = [v(x0)] = [w(x0)]
π(v(x1)) = [v(x1)] = [w(x1)]

θx = 0 θx 6= 0

w(x1) = e−iθ(x0)v(x1)

w(x1) = e−iθ(x1)v(x1)

CP n−1

S2n−1

Figure 3.2: Illustration of how paths induced on S2n−1 by ux = Au are related by

phase θ(x)
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3.6 Evaluating the phase along paths in the Hopf bundle

The most interesting feature of equation (3.51) is how the RHS splits in to two parts,

the second of which involves the connection on the bundle. The connection here is

given by i Im(wHAw) (e.g. see (3.8), (3.12) and (3.46)) so that the vanishing of the

second term corresponds to parallel translation in the bundle:

the path w(x) induced by ux = Au is horizontal w.r.t. the natural con-

nection iff

θx(x) = Im(wHAw) (3.52)

So in this case the equation for w reduces to

wx = (I − wwH)Aw (3.53)

and we see that even though θ(x) is in general an arbitrary function, the expressions

used throughout the analysis, although completely natural and uncontrived, result

in a neat splitting of wx in to two distinct parts, out of which the notion of parallel

transport w.r.t. the natural connection automatically emerges. One interesting point

to note about the horizontal case is that then the equation of motion (3.53) is of

the same form as the equation of motion of the equivalent real system, i.e. of a real

variable w ∈ Sn−1 ⊂ Rn under the motion induced by a real system ux = Au, u ∈
Rn, A ∈ Mn(R). The fact that these real and complex systems of equal dimension

share the same equation of motion precisely when the motion in the complex system

is horizontal w.r.t. the natural connection is an interesting observation, however it

is not clear whether it has any deeper significance or applications.

Remark 3.6.2. It should also be noted that equation (3.53) coincides precisely with

a special case of the equation used in the continuous orthogonalization method of

Drury [26]. Thus the equation itself is familiar, however, its interpretation as an

expression of horizontality of dynamics w.r.t the natural connection is new. The

methods of geometric integration and continuous orthogonalization for preserving

constraint manifolds in numerical integration have been studied extensively [27], [28],

[29], and applied specifically to the problem of calculating the Evans function in [24].

Thus the overlap between the material presented in this thesis and previous studies

on continuous orthogonalization may be quite large; establishing and interpreting the

connections would form an interesting extension beyond this work.

Thus, we find that for paths induced by ux = Au, equation (3.35) for the phase

curve θ(x) reduces to

θ(x) =

∫ x

x0

(Im(u(s)HAu(s))

(u(s)Hu(s))

)
ds (3.54)
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3.6 Evaluating the phase along paths in the Hopf bundle

Having set up the general theory of the phase in the Hopf bundle and shown

how this gives rise to each path of vectors in Cn \ {0} having an associated phase

curve, we now focus attention on the lowest dimensional case, the S1 → S3 → S2

bundle, to show how the concepts apply there. We will then proceed to solve phase

equations numerically in a wider variety of situations.
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Chapter 4

Investigating the Hopf bundle

using the quaternionic matrices

In this chapter we show how the quaternionic matrices can be used to describe

the classical Hopf bundle. By providing a concrete coordinate system within which

to work, this new application of the matrices reveals many interesting geometrical

aspects of the bundle. We show explicitly how parallel transport fits in to the

picture, how we can extract the phase for certain dynamics within the bundle, and

finally we observe the motion of the phase in a few numerical examples.

4.1 The quaternionic matrices

The basis quaternions are given by 1, i, j, k, satisfying i2 = j2 = k2 = ijk = −1.

The quaternions in general are defined as H = {a+ bi+ cj+dk : a, b, c, d ∈ R}. The

quaternionic matrices J1, J2, J3, K1, K2, K3 are defined as

J1 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 , J2 =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 ,

J3 =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 (4.1)
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4.1 The quaternionic matrices

K1 =




0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


 , K2 =




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


 ,

K3 =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 (4.2)

Together they form a basis for so(4), the Lie algebra of the Lie group of rotations

about a fixed point in R4, S0(4); they are featured in many standard texts, such

as [25]. They are called quaternionic matrices because of their intimate link with

the quaternions; for example, if we represent x = a+ bi+ cj+dk ∈ H by the matrix




a b c d
−b a −d c
−c d a −b
−d −c b a


 = aI4 + bK2 + cK3 + dK1 (4.3)

= a




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+ b




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




+c




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


+ d




0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


 , (4.4)

then in this format, quaternionic addition and multiplication are represented by

standard matrix addition and multiplication. (In is the n-dimensional identity ma-

trix.) The Jis and Kis are skew-symmetric and satisfy

J2
i = −I4 K2

i = −I4 i = 1, 2, 3

JiJj = εijkJk KiKj = εijkKk i, j, k = 1, 2, 3, all different

(where εijk is 1 for even permutations, −1 for odd permutations and 0 otherwise.)

The Jis and Kis are related by the quaternionic matrix conjugation operator R:

R =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (4.5)
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4.2 The Hopf bundle again

and we have

K1 = RTJ3R

K2 = RTJ1R

K3 = RTJ2R (4.6)

so that any results in terms of the Jis could equally well be written in terms of the

Kis and vice versa.

Proposition 4.1.1. For each ξ ∈ R4, ξ 6= 0, {ξ,K1ξ,K2ξ,K3ξ} is an orthogonal

basis for R4.

Proof. First, for each i = 1, 2, 3, 〈ξ,Kiξ〉 = 0, by skew-symmetry.

Second, for each i 6= j,

〈Kiξ,Kjξ〉 = 〈ξ,KT
i Kjξ〉 = 〈ξ,−KiKjξ〉 = 〈ξ,−εijkKkξ〉 = 0, (4.7)

again by skew-symmetry.

Thus if we take a 4-vector v ∈ S3 ⊂ R4, then since v is itself a vector normal to S3,

we have TvS
3 = span{K1v,K2v,K3v}. In this way the quaternionic matrices provide

a straightforward method for describing tangent spaces to the 3-sphere explicitly in

terms of four real coordinates. Moreover, this description is closely linked with the

geometry of the Hopf bundle, as we show below.

4.2 The Hopf bundle again

4.2.1 The different coordinate representations of the Hopf

bundle

We consider here the Hopf bundle S1 → S3 → S2, as described in Section 3.2.

This case is very useful and features a lot in the literature because it is of low

enough dimension to allow us to visualize elements of the geometry using various

coordinate systems. However, what most texts omit to mention is that there are

many different but geometrically equivalent Hopf-S1 actions on S3 - in the sense

that the defining characteristics of the resulting bundles are the same - and that in

any specific situation it is the choice of group action which dictates the particular
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4.2 The Hopf bundle again

coordinate representation given. If we have complex coordinates (z1, z2) ∈ S3 ⊂ C2

then the standard S1 group action is written

Φ : S1 × S3 → S3

(eiθ, (z1, z2)) 7→ (eimθz1, e
inθz2), with m,n ∈ Z \ {0} (4.8)

But for a principal bundle the group action is required to be free, which is the case

in this standard form if and only if m,n = ±1. (However, this is not the most

general form of free S1 action on C2, as we shall see in Section 4.2.5 below.) Dif-

ferent combinations of m,n = ±1 correspond to different ways of rotating points

in S3. Confusingly, this leads to a variety of slightly different coordinate represen-

tations of the Hopf bundle in the literature. For example, Cushman even uses two

different representations within one book, [22] (p.367, p.374), and Chruściński and

Jamio lkowski [14] use yet another. These simply correspond to different choices of

coordinates at some stage in the analyses, often just a different ordering of the three

coordinates for S2. Moreover, in the following investigation of the Hopf bundle,

which uses the quaternionic matrices to describe the tangent space to the bundle,

evenly permuting these matrices in the analysis corresponds to selecting a different

S1 action, as will hopefully become clear as the discussion progresses.

Remark 4.2.1. As stated by Hou and Hou in [30], the symmetry properties en-

countered in the Hopf bundle are a consequence of S3 being a parallelizable manifold

(a parallelizable n-manifold is a manifold with exactly n smoothly varying linearly-

independent tangent vector fields at each point). The only n-spheres which are par-

allelizable manifolds are S1, S3 and S7, which are the manifolds of unit complex

numbers, quaternions and octonions O respectively. Now, a division algebra A is an

algebra with unit element which, for each non-zero element a ∈ A, also contains its

inverse a−1 ∈ A, and it can be shown that the only division algebras with a norm -

with which to potentially form a unit manifold - are in fact R, C, H and O. Thus

“division algebras lie at the very core of the classification of possible symmetries in

nature”. These fundamental issues lie outside the scope of this thesis, we simply

include a few lines on the matter to give an idea of the underlying issues which

generate the remarkable symmetries encountered here.
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4.2 The Hopf bundle again

4.2.2 An explicit coordinate representation of the Hopf bun-

dle

Take z ∈ S3 ⊂ C2. We consider only the m = n = 1 S1 action above, so we have

Φ : S1 × S3 → S3 (4.9)

(eiθ, z) 7→ eiθz (4.10)

The form of the coordinates we choose for the Hopf map throughout the following

is

π : C2 → R3 (4.11)
(
z1

z2

)
7→




2Re(z1z̄2)
2Im(z1z̄2)
|z1|2 − |z2|2


 (4.12)

=




z̄1z2 + z1z̄2

i(z̄1z2 − z1z̄2)
|z1|2 − |z2|2


 (4.13)

Then write z as

z =

(
z1

z2

)
=

(
x1 + iy1

x2 + iy2

)
=

(
x1

x2

)
+ i

(
y1

y2

)
(4.14)

and define a correspondence between the real and complex coordinates by setting

v =




x1

x2

y1

y2


 =




Re(z1)
Re(z2)
Im(z1)
Im(z2)


 ∈ S

3 ⊂ R4 (4.15)

In these coordinates π becomes

π :




x1

x2

y1

y2


 7→




2(x1x2 + y1y2)
2(x2y1 − x1y2)
x2

1 + y2
1 − x2

2 − y2
2


 (4.16)

so that at the point v =




x1

x2

y1

y2


 ∈ S3, the tangent map π∗ : TvS

3 → Tπ(v)S
2 is

given by the matrix

π∗ = 2




x2 x1 y2 y1

−y2 y1 x2 −x1

x1 −x2 y1 −y2


 (4.17)
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4.2.3 The vertical subspace

Now, we know that in this coordinate representation of the Hopf bundle, the vertical

space of the bundle at v, Vv, is the kernel of this matrix, ker(π∗). To obtain an

explicit expression for Vv we first note that each a ∈ TvS3 may be written in terms

of the basis {K1v,K2v,K3v} for TvS
3 described above:

a = c1K1v + c2K2v + c3K3v for some constants c1, c2, c3 ∈ R (4.18)

Then by direct calculation we see that

π∗(K1v) 6=




0
0
0


 , π∗(K2v) 6=




0
0
0


 , π∗(K3v) =




0
0
0


 (4.19)

so that in fact the vertical space at v is the space spanned by the vector obtained

by applying quaternionic matrix K3 to the position vector v:

Vv = ker(π∗)
∣∣
TvS3 (4.20)

= span{K3v} (4.21)

= span

{



0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0







x1

x2

y1

y2




}
(4.22)

= span

{



y1

y2

−x1

−x2




}
(4.23)

Remark 4.2.2. As always, the term “span” refers to multiplication by real numbers

only.

For completeness, and to demonstrate the process explicitly, we briefly show how

this translates to complex coordinates. Write Vv as

Vv = span{K3v} =

{
α




y1

y2

−x1

−x2


 : α ∈ R

}
(4.24)

and elements of this set are in correspondence with complex vectors as before:

R4 3
[
α




y1

y2

−x1

−x2



]
←→

[
α

(
y1

y2

)
+ iα

(
−x1

−x2

)]
∈ C2 (4.25)
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But

α

(
y1

y2

)
+ iα

(
−x1

−x2

)
= −iα

[( x1

x2

)
+ i

(
y1

y2

)]
(4.26)

= −iα
(
z1

z2

)
(4.27)

so that in complex coordinates, the vertical space at z ∈ S3 ⊂ C2 is

Vz = {−iαz : α ∈ R} = span{iz} (4.28)

which is of course consistent with the fact that the vertical space is tangent to the

group action at the identity: the group action is S1, so applying the action to z ∈ S3

in complex coordinates gives the point eiθz, so a tangent vector to the curve of points

generated by the action, at the identity of the action, is

[ d
dθ

(eiθz)
]
θ=0

= ieiθz
∣∣∣
θ=0

= iz (4.29)

and the vertical space is indeed the span of this vector.

4.2.4 The group action in real coordinates

The group action in complex coordinates is Φ : S1 × S3 → S3, (eiθ, z) 7→ eiθz. This

translates to real coordinates as follows

eiθz =

(
eiθz1

eiθz2

)
(4.30)

=

(
(cos θ + i sin θ)(x1 + iy1)
(cos θ + i sin θ)(x2 + iy2)

)
(4.31)

=

(
x1 cos θ − y1 sin θ
x2 cos θ − y2 sin θ

)
+ i

(
x1 sin θ + y1 cos θ
x2 sin θ + y2 cos θ

)
(4.32)

from which, using Gθ to denote the group action in real coordinates, we form the

following 4-vector according to the above real-complex correspondence

Gθv = Gθ




x1

x2

y1

y2


 =




x1 cos θ − y1 sin θ
x2 cos θ − y2 sin θ
x1 sin θ + y1 cos θ
x2 sin θ + y2 cos θ


 (4.33)

=




cos θ 0 − sin θ 0
0 cos θ 0 − sin θ

sin θ 0 cos θ 0
0 sin θ 0 cos θ







x1

x2

y1

y2


 (4.34)

=

(
I2 cos θ −I2 sin θ
I2 sin θ I2 cos θ

)
v (4.35)
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so in real coordinates the group action has the form

Gθ =

(
I2 cos θ −I2 sin θ
I2 sin θ I2 cos θ

)
(4.36)

Remark 4.2.3. Demonstrating consistency again, we see that a tangent vector to

the curve of points generated by the group action, in real coordinate form, at the

identity, is

[ d
dθ

(Gθv)
]
θ=0

=
[ d
dθ

(Gθ)
]
θ=0

v (4.37)

=
[ d
dθ

(
I2 cos θ −I2 sin θ

I2 sin θ I2 cos θ

)]
θ=0

v (4.38)

=

(
−I2 sin θ −I2 cos θ

I2 cos θ −I2 sin θ

)

θ=0

v (4.39)

=

(
0 −I2

I2 0

)
v (4.40)

=




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0







x1

x2

y1

y2


 (4.41)

=




−y1

−y2

x1

x2


 (4.42)

which shows that the vertical space is of course the same as before.

4.2.5 The group action in terms of the exponential map

The previous sections have shown that given a particular coordinate representation

of the Hopf bundle, we can derive expressions for the vertical space and the action

in both real and complex coordinates, and we demonstrated the process of passing

from one to the other. However, we can also approach the problem from a more

fundamental point of view, by using the relationship between a Lie group and its

Lie algebra to describe the situation.

First, observe that

e−K3θ =

(
I2 cos θ −I2 sin θ
I2 sin θ I2 cos θ

)
= Gθ (4.43)
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(The proof of this is a special case of (4.61).) This result is explained as follows:

Recall, if G is a Lie group, g is its Lie algebra, ξ ∈ g and exp : g → G is the

exponential map, then

t 7→ exp(tξ), t ∈ R (4.44)

is the unique 1-parameter subgroup of G whose tangent vector at t = 0 is ξ, and we

sometimes write

exp(tξ) = gξ(t) ∈ G (4.45)

to emphasize the fact that exp(tξ) is an element of the group. However, this result

alone does not quite fit the scenario above, as can be seen by the fact that in our

equation, e−K3θ is equal to a 4 × 4 matrix, Gθ, which is not obviously a member

of the group S1. The key to understanding the result then is to consider not just

the Lie group, Lie algebra and 1-parameter subgroup, but instead representations

of these.

Definition 4.2.1. A map φ : G → H is a Lie group homomorphism if it is a

smooth homomorphism between Lie groups G and H. i.e. ∀g1, g2 ∈ G, φ(g1 ◦ g2) =

φ(g1) ◦ φ(g2). If in addition the image group H is one of the general linear matrix

Lie groups, GLn(R) or GLn(C) then φ is called a representation of G.

Definition 4.2.2. If g and h are Lie algebras, a map ψ : g → h is a Lie algebra

homomorphism if it is linear and preserves brackets, i.e. ψ[ξ, η] = [ψ(ξ), ψ(η)]∀ξ, η ∈
g. If in addition the image algebra h is one of the the Lie algebras, gln(R) or gln(C),

of the general linear matrix Lie groups, then ψ is called a representation of the Lie

algebra g.

So we can use matrices to represent Lie groups and Lie algebras. The specific

fact we then need is that if we have an m-dimensional representation of g (i.e. a set of

m×m matrices satisfying g’s commutation relations), then its exponentiation gives

an m-dimensional representation of G, which is again a set of m×m matrices. This

is exactly what is going on here. Since the Lie algebra of a Lie group is isomorphic

to the tangent space at the identity (g ∼= TeG), and TvS
3 = span{K1v,K2v,K3v},

{K1, K2, K3} is a basis for a representation of the Lie algebra of S3 (or, strictly

speaking, it is a basis for a representation of the Lie algebra of the Lie group SU(2),

SU(2) being diffeomorphic to S3, since the notion of group multiplication only makes

sense in this context). So as parameter we use θ ∈ R, and if we have a vector in

TvS
3, say K3v, then K3 is a 4-dimensional representation of the corresponding Lie

algebra element; and the map

θ → exp(θK3), θ ∈ R (4.46)

42



4.2 The Hopf bundle again

yields a representation on R4 of the unique 1-parameter subgroup S1 of S3 (or,

strictly, U(1) of SU(2)) whose tangent vector at θ = 0 is K3v. This explains the

exponentiation calculation above, showing that if we select K3v to be our vertical

direction (and reverse the sign of θ for exact agreement), then the group action can

be written as

Gθ = e−K3θ (4.47)

as before - which is of a course a 4-dimensional representation of the S1 group action.

This form of expression for the group action makes explicit the correspondence

between the group action and vertical direction. We can in fact pick the vertical

direction to be any direction within the tangent space TvS
3 and calculate the real

coordinate expression for the associated group action similarly, as follows. Take

a, b, c ∈ R, fixed, and let

K̃ = aK1 + bK2 + cK3 (4.48)

Then

K̃2 = (aK1 + bK2 + cK3)(aK1 + bK2 + cK3) (4.49)

= (−a2 − b2 − c2)I4 + (aK1bK2 + · · ·+ bK2aK1 + · · · ) (4.50)

= (−a2 − b2 − c2)I4 + (ab(K3) + · · ·+ ab(−K3) + · · · ) (4.51)

= (−a2 − b2 − c2)I4 (4.52)

and writing α2 = a2 + b2 + c2 we get K̃2 = −α2I4, so that
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eK̃θ =
∞∑

n=0

(K̃θ)n

n!
(4.53)

=
∞∑

n=0

(K̃)nθn

n!
(4.54)

=
∞∑

n=0

(K̃)2nθ2n

(2n)!
+
∞∑

n=0

(K̃)2n+1θ2n+1

(2n+ 1)!
(4.55)

=
∞∑

n=0

((K̃)2)nθ2n

(2n)!
+
∞∑

n=0

(K̃)((K̃)2)nθ2n+1

(2n+ 1)!
(4.56)

= I4

∞∑

n=0

(−α2)nθ2n

(2n)!
+ K̃

∞∑

n=0

(−α2)nθ2n+1

(2n+ 1)!
since K̃2 = −α2I4

= I4

∞∑

n=0

(−1)nα2nθ2n

(2n)!
+ K̃

∞∑

n=0

(−1)nα2nθ2n+1

(2n+ 1)!
(4.57)

= I4

∞∑

n=0

(−1)n(αθ)2n

(2n)!
+
K̃

α

∞∑

n=0

(−1)n(αθ)2n+1

(2n+ 1)!
(4.58)

= I4 cos(αθ)− K̃

α
sin(αθ) (4.59)

= I4 cos(αθ)− sin(αθ)

α

[
aK1 + bK2 + cK3

]
(4.60)

=




cos(αθ) −b sin(αθ)
α

−c sin(αθ)
α

−a sin(αθ)
α

b sin(αθ)
α

cos(αθ) a sin(αθ)
α

−c sin(αθ)
α

c sin(αθ)
α

−a sin(αθ)
α

cos(αθ) b sin(αθ)
α

a sin(αθ)
α

c sin(αθ)
α

−b sin(αθ)
α

cos(αθ)


 (4.61)

So this is a real coordinate representation of the group action on R4 which results

from choosing the vertical direction to be K̃v ∈ TvS3. Picking a = b = 0, c = −1

verifies the previous case, (4.43). This discussion shows that selecting any particular

coordinate representation of the Hopf map, such as (4.16), is tantamount to selecting

a group action, or indeed a vertical direction in the bundle.

Remark 4.2.4. Notice that the period of this action is 2π iff α = ±1, i.e. when

a2 + b2 + c2 = 1. Thus we have the interesting result that all 2π-periodic S1 actions

in the Hopf bundle are parametrized by S2 in this way. This aspect of the bundle

structure could well be a good subject for further investigation outside this thesis.

One important point to make, the origin of which lies in the above calculation

(step (4.60)), is that the group action for the a = b = 0, c = −1 case can be written
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as

Gθ =

(
I2 cos θ −I2 sin θ
I2 sin θ I2 cos θ

)
= I4 cos θ −K3 sin θ (4.62)

4.2.6 The horizontal subspace

Now, we know that {K1v,K2v,K3v} is an orthogonal basis for TvS
3, and that in the

particular coordinate system for the Hopf map on which we are focusing, K3v is the

vertical direction. We also know that every horizontal space HvS
3 must by definition

satisfy two properties, firstly non-degeneracy, TvS
3 = VvS

3
⊕

HvS
3, and secondly

right-equivariance, (Φg)∗(HvS
3) = HΦg(v)S

3. Since K3v is the vertical direction, the

space spanned by vectors {K1v,K2v} already satisfies the first of these conditions

and has the added property of being orthogonal to the vertical direction. Moreover,

this first condition remains satisfied even following the addition of some component

of the vertical direction to each of the horizontal directions, say an amount δ1 in the

K1v direction and an amount δ2 in the K2v direction, yielding the space spanned

by vectors {K1v + δ1K3v,K2v + δ2K3v}. Write

ζ1(δ1) = K1 + δ1K3

ζ2(δ2) = K2 + δ2K3

so that

K1v + δ1K3v = (K1 + δ1K3)v = ζ1v

K2v + δ2K3v = (K2 + δ2K3)v = ζ2v

and the spaces we are looking at as potential horizontal subspaces are the spaces

spanned by {ζ1v, ζ2v} for various values of δ1 and δ2. The orthogonal case is just

the δ1 = δ2 = 0 case, which is the natural - or canonical - connection. Now, for

span{ζ1v, ζ2v} to genuinely be a horizontal space of the bundle it must satisfy the

equivariance property, and to check this, to see if this imposes any extra constraints

on the system, in particular on the δis, we substitute real coordinate expressions for

the various elements in to the equivariance condition equation, as follows.

4.2.7 Investigating equivariance of potential horizontal sub-

spaces

In order for the space span{ζ1v, ζ2v}, at the point v, to satisfy right-equivariance,

we require

(Φg)∗(HvS
3) = HΦg(v)S

3 (4.63)
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which in the current notation becomes

span
{

(Gθ)∗(ζ1v), (Gθ)∗(ζ2v)
}

= span
{
ζ1(Gθv), ζ2(Gθv)

}
(4.64)

Keeping in mind that Gθ : S3 → S3, and (Gθ)∗ : TvS
3 → TGθ(v)S

3, if V ∈ R4 is a

tangent vector to a path v(t) on S3 at t = 0, i.e. V = d
dt
v(t)

∣∣
t=0

, we then have

[
(Gθ)∗

∣∣
v

]
V =

[
(Gθ)∗

∣∣
v

] d
dt
v(t)

∣∣
t=0

(4.65)

=
d

dt

[
Gθ(v(t))

]
t=0

(4.66)

= Gθ

[ d
dt

(v(t))
]
t=0

since Gθ is just a θ-dependent matrix

= GθV (4.67)

so (Gθ)∗ = Gθ. This is of course exactly the same calculation and result as we saw

before in (3.20), just using explicit coordinate representations for the group elements

(both as points in the group and actions on the group). Thus the equivariance

condition becomes

span
{
Gθ(ζ1v), Gθ(ζ2v)

}
= span

{
ζ1(Gθv), ζ2(Gθv)

}
(4.68)

which in full Ki notation is

span
{
GθK1v + δ1GθK3v,GθK2v + δ2GθK3v

}

= span
{
K1Gθv + δ1K3Gθv,K2Gθv + δ2K3Gθv

}
(4.69)

But now, from (4.62) we have

Gθ = I4 cos θ −K3 sin θ (4.70)

which implies

K1Gθ = K1 cos θ −K1K3 sin θ = K1 cos θ +K2 sin θ (4.71)

K2Gθ = K2 cos θ −K2K3 sin θ = K2 cos θ −K1 sin θ (4.72)

GθK1 = K1 cos θ −K3K1 sin θ = K1 cos θ −K2 sin θ (4.73)

GθK2 = K2 cos θ −K3K2 sin θ = K2 cos θ +K1 sin θ (4.74)

and

K3Gθ = K3 cos θ −K3K3 sin θ = K3 cos θ + I4 sin θ = GθK3 (4.75)
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Then using these expressions we find

GθK1 cos 2θ +GθK2 sin 2θ

= (K1 cos θ −K2 sin θ) cos 2θ + (K2 cos θ +K1 sin θ) sin 2θ

(using (4.73) and (4.74)) (4.76)

= (K1 cos θ −K2 sin θ)(cos2 θ − sin2 θ) + (K2 cos θ +K1 sin θ)(2 sin θ cos θ)

= K1 cos3 θ −K1 sin2 θ cos θ −K2 sin θ cos2 θ +K2 sin3 θ

+2K2 sin θ cos2 θ + 2K1 sin2 θ cos θ (4.77)

= K1 cos3 θ +K1 sin2 θ cos θ +K2 sin3 θ +K2 sin θ cos2 θ (4.78)

= K1 cos θ(cos2 θ + sin2 θ) +K2 sin θ(sin2 θ + cos2 θ) (4.79)

= K1 cos θ +K2 sin θ (4.80)

= K1(I4 cos θ −K3 sin θ) (4.81)

= K1Gθ (4.82)

and

−GθK1 sin 2θ +GθK2 cos 2θ

= −(K1 cos θ −K2 sin θ) sin 2θ + (K2 cos θ +K1 sin θ) cos 2θ

(using (4.73) and (4.74)) (4.83)

= −(K1 cos θ −K2 sin θ)(2 sin θ cos θ) + (K2 cos θ +K1 sin θ)(cos2 θ − sin2 θ)

= −2K1 sin θ cos2 θ + 2K2 sin2 θ cos θ +K2 cos3 θ

−K2 sin2 θ cos θ +K1 sin θ cos2 θ −K1 sin3 θ (4.84)

= K2 cos3 θ +K2 sin2 θ cos θ −K1 sin3 θ −K1 sin θ cos2 θ (4.85)

= K2 cos θ(cos2 θ + sin2 θ)−K1 sin θ(sin2 θ + cos2 θ) (4.86)

= K2 cos θ −K1 sin θ (4.87)

= K2(I4 cos θ −K3 sin θ) (4.88)

= K2Gθ (4.89)

So to summarize:

K1Gθ = GθK1 cos 2θ +GθK2 sin 2θ

K2Gθ = −GθK1 sin 2θ +GθK2 cos 2θ

K3Gθ = GθK3 (4.90)
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4.2.7.1 The canonical connection

For the canonical connection we have δ1 = δ2 = 0, and the equivariance condition

is just

span
{
GθK1v,GθK2v

}
= span

{
K1Gθv,K2Gθv

}
(4.91)

Then from linear algebra we know that for any vectors v1, v2, w1, w2 ∈ Rn,

span{v1, v2} = span{w1, w2} ⇔ ∃ a nonsingular 2 × 2 matrix M s.t.

[v1|v2] = [w1|w2] M
(n× 2) (n× 2) (2× 2)

(4.92)

where [v1|v2] denotes the matrix whose columns are the vectors v1, v2. Thus we seek

a nonsingular 2× 2 matrix M =

(
m11 m12

m21 m22

)
s.t.

[
K1Gθv

∣∣∣ K2Gθv
]

=
[
GθK1v

∣∣∣ GθK2v
]( m11 m12

m21 m22

)
(4.93)

Write this as

K1Gθv = m11GθK1v +m21GθK2v (4.94)

K2Gθv = m12GθK1v +m22GθK2v (4.95)

and substitute the first two equations of (4.90) to give

GθK1 cos 2θv +GθK2 sin 2θv = m11GθK1v +m21GθK2v (4.96)

−GθK1 sin 2θv +GθK2 cos 2θv = m12GθK1v +m22GθK2v (4.97)

Then comparing coefficients we find

M =

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

)
(4.98)

Therefore the equivariance condition is satisfied and Hv = span{K1v,K2v} is a

genuine horizontal subspace of the bundle. In addition, since M is a pure rotation,

we see that

as a point v moves along a fibre in the bundle, the horizontal subspace

formed by applying K1 and K2 to v spins around an axis in the vertical

direction at a rate of double the rate of movement along the fibre.

48



4.2 The Hopf bundle again

4.2.7.2 The general case connection

Similarly, when δ1, δ2 6= 0, we seek nonsingular matrix N =

(
n11 n12

n21 n22

)
s.t.

[
K1Gθv + δ1K3Gθv

∣∣∣ K2Gθv + δ2K3Gθv
]

=
[
GθK1v + δ1GθK3v

∣∣∣ GθK2v + δ2GθK3v
]( n11 n12

n21 n22

)
(4.99)

Again, write this as

K1Gθv + δ1K3Gθv

= n11GθK1v + n21GθK2v + (δ1n11 + δ2n21)K3Gθv (4.100)

K2Gθv + δ2K3Gθv

= n12GθK1v + n22GθK2v + (δ1n12 + δ2n22)K3Gθv (4.101)

⇔
[
K1Gθ + δ1K3Gθ

]
v

=
[
n11GθK1 + n21GθK2 + (δ1n11 + δ2n21)K3Gθ

]
v (4.102)

[
K2Gθ + δ2K3Gθ

]
v

=
[
n12GθK1 + n22GθK2 + (δ1n12 + δ2n22)K3Gθ

]
v (4.103)

then using equations (4.71)-(4.75) we get

[
(K1 cos θ +K2 sin θ) + δ1(K3 cos θ + I4 sin θ)

]
v

=
[
n11(K1 cos θ −K2 sin θ) + n21(K2 cos θ +K1 sin θ)

+(δ1n11 + δ2n21)(K3 cos θ + I4 sin θ)
]
v (4.104)

[
(K2 cos θ −K1 sin θ) + δ2(K3 cos θ + I4 sin θ)

]
v

=
[
n12(K1 cos θ −K2 sin θ) + n22(K2 cos θ +K1 sin θ)

+(δ1n12 + δ2n22)(K3 cos θ + I4 sin θ)
]
v (4.105)

⇔
[

cos θK1 + sin θK2 + δ1 cos θK3 + δ1 sin θI4

]
v

=
[
n11(K1 cos θ −K2 sin θ) + n21(K2 cos θ +K1 sin θ)

+(δ1n11 + δ2n21)(K3 cos θ + I4 sin θ)
]
v (4.106)

[
− sin θK1 + cos θK2 + δ2 cos θK3 + δ2 sin θI4

]
v

=
[
n12(K1 cos θ −K2 sin θ) + n22(K2 cos θ +K1 sin θ)

+(δ1n12 + δ2n22)(K3 cos θ + I4 sin θ)
]
v (4.107)
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⇔
[

cos θK1 + sin θK2 + δ1 cos θK3 + δ1 sin θI4

]
v

=
[
(n11 cos θ + n21 sin θ)K1 + (−n11 sin θ + n21 cos θ)K2

+(δ1n11 + δ2n21) cos θK3 + (δ1n11 + δ2n21) sin θI4

]
v (4.108)

[
− sin θK1 + cos θK2 + δ2 cos θK3 + δ2 sin θI4

]
v

=
[
(n12 cos θ + n22 sin θ)K1 + (−n12 sin θ + n22 cos θ)K2

+(δ1n12 + δ2n22) cos θK3 + (δ1n12 + δ2n22) sin θI4

]
v (4.109)

Then since v,K1v,K2v and K3v are mutually orthogonal, we can equate coefficients

to yield

cos θ = n11 cos θ + n21 sin θ (4.110)

sin θ = −n11 sin θ + n21 cos θ (4.111)

− sin θ = n12 cos θ + n22 sin θ (4.112)

cos θ = −n12 sin θ + n22 cos θ (4.113)

δ1 = δ1n11 + δ2n21 (4.114)

δ2 = δ1n12 + δ2n22 (4.115)

The first four equations here are the same as in the case of the natural connection,

and they imply

N =

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

)
(4.116)

However, given these nij values, there are no values of δ1 and δ2 other than zero

which satisfy the final two equations. Hence we conclude that right-equivariance is

not satisfied for spaces span{ζ(δ1)v, ζ(δ2)v} unless δ1 = δ2 = 0, and so

the only equivariant horizontal subspace of this bundle is the subspace of

the tangent space orthogonal to the vertical direction.

4.2.8 The connection form interpretation

Sometimes it makes more sense to use the 1-form interpretation of the connection

instead of writing out horizontal spaces explicitly. Again let V ∈ R4 be a tangent

vector to S3 at v. Considering subspaces of TvS
3 whose direct sum with the vertical

direction gives the whole of TvS
3, as we are, the 1-form associated with any particular

such subspace is just the projection on to the vertical direction whose kernel is the
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given subspace. Thus the 1-form associated with the orthogonal complement of the

vertical space, span{K1v,K2v}, is given by

ωv(V) = 〈K3v,V〉, ∀v ∈ S3,V ∈ TvS3 (4.117)

and the 1-form associated with the subspace span{ζ1(δ1)v, ζ2(δ2)v} is

ωδv(V) = 〈K3v − δ1K1v − δ2K2v,V〉, ∀v ∈ S3,V ∈ TvS3 (4.118)

We now consider the equivariance condition for each of these cases again, but now

in the 1-form interpretation. Recall, the equivariance condition is

ωΦgv

(
(Φg)∗V

)
= Φ−1

g

(
ωv(V)

)
Φg (4.119)

so in current notation, and using (Gθ)∗ = Gθ, this becomes

ωGθv
(
GθV

)
= GT

θ

(
ωv(V)

)
Gθ (4.120)

4.2.8.1 The canonical connection

Considering each side of (4.120) separately, with 1-form given by (4.117) we get

LHS = ωGθv
(
GθV

)
(4.121)

= 〈K3Gθv,GθV〉 (4.122)

= 〈GT
θK3Gθv,V〉 (4.123)

= 〈K3v,V〉 by (4.90) (4.124)

RHS = GT
θ

(
ωv(V)

)
Gθ (4.125)

=
(
ωv(V)

)
GT
θGθ (4.126)

= ωv(V) (4.127)

= 〈K3v,V〉 (4.128)

so the equivariance condition is satisfied.
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4.2.8.2 The general case connection

Considering each side of (4.120) separately again, with 1-form given by (4.118) we

get

LHS = ωδGθv
(
GθV

)
(4.129)

= 〈 K3Gθv − δ1K1Gθv − δ2K2Gθv , GθV 〉 (4.130)

= 〈 GT
θK3Gθv − δ1G

T
θK1Gθv − δ2G

T
θK2Gθv , V 〉 (4.131)

= 〈K3v − δ1(K1 cos 2θ +K2 sin 2θ)v

−δ2(−K1 sin 2θ +K2 cos 2θ)v , V〉 by (4.90) (4.132)

= 〈(−δ1 cos 2θ + δ2 sin 2θ)K1v

+(−δ1 sin 2θ − δ2 cos 2θ)K2v +K3v , V 〉 (4.133)

RHS = GT
θ

(
ωδv(V)

)
Gθ (4.134)

= GT
θ

(
〈K3v − δ1K1v − δ2K2v,V〉

)
Gθ (4.135)

= 〈K3v − δ1K1v − δ2K2v,V〉GT
θGθ (4.136)

= 〈K3v − δ1K1v − δ2K2v,V〉 (4.137)

Then since K1v,K2v and K3v are orthogonal, equating coefficients gives

− δ1 = −δ1 cos 2θ + δ2 sin 2θ (4.138)

−δ2 = −δ1 sin 2θ − δ2 cos 2θ (4.139)

for which the only solution is δ1 = δ2 = 0 and as before the equivariance condition

fails for general δ1, δ2, confirming that the only horizontal subspace is the orthogonal

complement of the vertical space.

4.3 Dynamics in the Hopf bundle using the quater-

nionic matrices

We now consider the C2 case of the system of linear ODEs around which much of

this thesis is focused, and its description in terms of the quaternionic matrices. Let

u be a point in the ambient space C2, and let the ODE system be

u̇ = Cu u(t) ∈ C2, C ∈M2(C) (4.140)
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with appropriate initial conditions. We use t as the independent variable for the

dynamics in this section to avoid confusion with the real part of zj = xj + iyj. Write

C as

C = A+ iB A,B ∈M2(R) (4.141)

and let z ∈ C2 be the projection of u on to S3, with r the norm of u, so we have:

u = rz, ||z|| = 1, r = ||u||, u ∈ C2, z ∈ S3 ⊂ C2, r ∈ R (4.142)

The dynamics of r and z induced by u̇ = Cu are then

ṙr−1 = Re(zHCz) (4.143)

ż = (I − zzH)Cz + izIm(zHCz) (4.144)

and if we write the RHS side of (4.144) as F (z):

F (z) := (I − zzH)Cz + izIm(zHCz) (4.145)

then F : S3 → TzS
3 (since ż ∈ TzS3), and equivariance is manifested in the equality

F (eiθz) = eiθF (z) (4.146)

Now, using real coordinates as before,

z =

(
z1

z2

)
=

(
x1 + iy1

x2 + iy2

)
=

(
x1

x2

)
+ i

(
y1

y2

)
, v =




x1

x2

y1

y2


 =

(
x
y

)

(4.147)

with x =

(
x1

x2

)
, y =

(
y1

y2

)
∈ R2, ż = F (z) transforms to

v̇ = (I4 − vvT )Σv, v ∈ S3 (4.148)

where Σ is the 4× 4 real matrix

Σ =

(
A −B
B A

)
(4.149)
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We show this:

RHS (of (4.148)) = (I4 − vvT )Σv (4.150)

= Σv − vvTΣv (4.151)

=

(
A −B
B A

)(
x
y

)

−
(
x
y

)(
xT yT

)( A −B
B A

)(
x
y

)
(4.152)

=

(
Ax−By
Bx+ Ay

)
−
(
x
y

)(
xT yT

)( Ax−By
Bx+ Ay

)
(4.153)

=

(
Ax−By
Bx+ Ay

)

−
(
x
y

)
(xTAx− xTBy + yTBx+ yTAy) (4.154)

=

(
Ax−By − xxTAx+ xxTBy − xyTBx− xyTAy
Bx+ Ay − yxTAx+ yxTBy − yyTBx− yyTAy)

)

and

RHS (of (4.144)) = (I − zzH)Cz + izIm(zHCz) (4.155)

= Cz − zRe(zHCz) (4.156)

= (A+ iB)(x+ iy)

−(x+ iy)Re
[
(xT − iyT )(A+ iB)(x+ iy)

]
(4.157)

= Ax−By + iBx+ iAy

−(x+ iy)Re
[
(xT − iyT )(Ax−By + iBx+ iAy)

]
(4.158)

= Ax−By + iBx+ iAy

−(x+ iy)Re
[
xTAx− xTBy + ixTBx+ ixTAy

−iyTAx+ iyTBy + yTBx+ yTAy
]

(4.159)

= Ax−By + iBx+ iAy

−(x+ iy)
[
xTAx− xTBy + yTBx+ yTAy

]
(4.160)

= Ax−By − xxTAx+ xxTBy − xyTBx− xyTAy
+i
[
Bx+ Ay − yxTAx+ yxTBy − yyTBx− yyTAy

]

which verifies the transformation, proving equivalence between (4.144) and (4.148).

Now write the RHS of (4.148) as Ω(v):

Ω(v) := (I4 − vvT )Σv (4.161)
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then Ω : S3 → TvS
3, and equivariance is manifested in the equality

Ω(Gθv) = GθΩ(v) (4.162)

Since v̇ ∈ TvS3 we can express it in terms of our orthonormal basis:

v̇ = Ω(v) = α1(v)K1v + α2(v)K2v︸ ︷︷ ︸+ α3(v)K3v︸ ︷︷ ︸, αi ∈ R (4.163)

∈ HvS
3 ∈ VvS3

with

αi(v) = 〈Kiv, v̇〉 = 〈Kiv,Ω(v)〉 (4.164)

Note that we can also write αi as

αi(v) = 〈Kiv,Ω(v)〉 = 〈Kiv, (I4 − vvT )Σv〉 (4.165)

= 〈Kiv,Σv〉 − 〈Kiv, vv
TΣv〉 (4.166)

= 〈Kiv,Σv〉 − (vTΣv)〈Kiv, v〉
since vTΣv is a scalar (4.167)

= 〈Kiv,Σv〉 by skew symmetry of Ki (4.168)

which helps in numerical calculations because of its reduced complexity.

4.3.1 Deriving the parallel transport equation

In this format, the phenomenon of parallel translation is particularly easy to under-

stand - as v moves around S3 in accordance with the equations of motion, there is

another point on S3, say w, which is related to v via some (t-dependent) group action,

such that w has zero component in the vertical direction. We set v(t) = Gθ(t)w(t),

and seek a formula for the phase θ(t) ∈ R which keeps w(t) horizontal.

v(t) = Gθ(t)w(t) (4.169)

⇒ v̇(t) =
dGθ

dθ
θ̇w(t) +Gθ(t)ẇ(t) (4.170)

= −K3Gθ(t)θ̇w(t) +Gθ(t)ẇ(t) since
dGθ

dθ
= −K3Gθ

= −θ̇Gθ(t)K3w(t) +Gθ(t)ẇ(t) since K3Gθ = GθK3

= Gθ(t)

[
− θ̇K3w(t) + ẇ(t)

]
(4.171)

⇒ GT
θ(t)v̇(t) = −θ̇K3w(t) + ẇ(t) (4.172)
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But

v̇(t) = α1(v)K1v + α2(v)K2v + α3(v)K3v (4.173)

= α1(Gθw)K1Gθw

+α2(Gθw)K2Gθw + α3(Gθw)K3Gθw (4.174)

⇒ GT
θ(t)v̇(t) = α1(Gθw)GT

θK1Gθw

+α2(Gθw)GT
θK2Gθw + α3(Gθw)GT

θK3Gθw (4.175)

So we have

− θ̇K3w(t) + ẇ(t) = α1(Gθw)GT
θK1Gθw + α2(Gθw)GT

θK2Gθw

+α3(Gθw)GT
θK3Gθw (4.176)

Now notice that

αi(v) = 〈Kiv,Ω(v)〉 (4.177)

⇒ αi(Gθw) = 〈KiGθw,Ω(Gθw)〉 (4.178)

= 〈KiGθw,GθΩ(w)〉 (4.179)

= 〈GT
θKiGθw,Ω(w)〉 (4.180)

then use (4.90) to get

α1(Gθw) = 〈GT
θK1Gθw,Ω(w)〉 (4.181)

= 〈(K1 cos 2θ +K2 sin 2θ)w,Ω(w)〉 (4.182)

= cos 2θ〈K1w,Ω(w)〉+ sin 2θ〈K2w,Ω(w)〉 (4.183)

= cos 2θα1(w) + sin 2θα2(w) (4.184)

α2(Gθw) = 〈GT
θK2Gθw,Ω(w)〉 (4.185)

= 〈(−K1 sin 2θ +K2 cos 2θ)w,Ω(w)〉 (4.186)

= − sin 2θ〈K1w,Ω(w)〉+ cos 2θ〈K2w,Ω(w)〉 (4.187)

= − sin 2θα1(w) + cos 2θα2(w) (4.188)

α3(Gθw) = 〈GT
θK3Gθw,Ω(w)〉 (4.189)

= 〈K3w,Ω(w)〉 (4.190)

= α3(w) (4.191)
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then substituting these results, along with equations (4.90), in (4.176) gives the

result

−θ̇K3w + ẇ = α1(w)K1w + α2(w)K2w + α3(w)K3w (4.192)

which implies

ẇ = α1(w)K1w + α2(w)K2w︸ ︷︷ ︸ + (α3(w) + θ̇)K3w︸ ︷︷ ︸
horizontal vertical

(4.193)

So for w(t) to be a horizontal path, ẇ(t) must have zero component in the vertical

direction, which is the case iff α3(w(t)) = −θ̇(t). But α3(w) = α3(Gθw) = α3(v), so

the condition on θ(t) for w(t) to be horizontal, in terms of the original path v(t), is

in fact

θ̇(t) = −α3(v(t)) = −〈K3v(t),Σv(t)〉 (4.194)

Thus if we solve our system numerically for v(t), then solving this equation for θ

simultaneously will yield a curve θ(t) which gives a horizontal path w(t) = GT
θ(t)v(t).

Remark 4.3.1. This expression for θ̇(t) may well look new, but it is of course just

the same expression as was displayed in Chapter 3, i.e. equation (3.31), just written

in terms of the real coordinate system of this case. To see this, write

θ̇(t) = −〈K3v(t), v̇(t)〉 (4.195)

= −〈




y1(t)

y2(t)

−x1(t)

−x2(t)


 ,




ẋ1(t)

ẋ2(t)

ẏ1(t)

ẏ2(t)


〉 (4.196)

= −y1ẋ1 − y2ẋ2 + x1ẏ1 + x2ẏ2 (4.197)

Indeed, α3(v) is just the natural connection form evaluated on Ω(v), see (4.117).

4.3.2 Numerical simulations

We present a few examples to illustrate how these concepts are implemented in

numerics and how θ(t) behaves in some real situations.

A first example

Let

C =

(
3− i 2 + 7i
5 + 6i 1 + 9i

)
, so A =

(
3 2
5 1

)
, B =

(
−1 7
6 9

)
(4.198)
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and integrate

v̇ = (I4 − vvT )Σv (4.199)

θ̇(t) = −〈K3v(t),Σv(t)〉 (4.200)

from t = 0 to tmax, using a variety of initial conditions. Note that C has eigenvec-

tor/value pairs

λ1 = −0.3579− 3.8460i ξ1 =

(
0.8557

−0.4301 + 0.2876i

)
(4.201)

λ2 = 4.3579 + 11.8460i ξ2 =

(
0.4836− 0.0845i

0.8712

)
(4.202)

The Matlab code integrate_real_coords1.m performs this calculation, and pro-

duces output showing firstly the phase θ(t) required for w(t) to remain horizontal

as v(t) moves around, and secondly the image on S2 of the solution path v(t) under

the Hopf map. Figures 4.1-4.4 show the graphical output, with tmax = 2, θ(0) = 0,

for initial conditions u(0) =

(
1 + 2i
3 + 4i

)
,

(
1 + 2i
30 + 4i

)
,

(
−1− 9i
−8 + 4i

)
,

(
−i
i

)
, re-

spectively.

Figure 4.1: Phase required for parallel translation

Points to note about these numerical results:

• No significantly different behaviour, other than the cases shown, was observed

in the system, even after testing a wide range of initial conditions.
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Figure 4.2: Phase required for parallel translation

Figure 4.3: Phase required for parallel translation
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Figure 4.4: Phase required for parallel translation

• The phase θ(t) has very similar behaviour in all situations. Note however that

for certain initial conditions there is a transitional region for small t, and θ

may even go negative briefly, as in Figure 4.4.

• As t increases, the image path on S2 always spirals in towards the same point,

π(v(tmax)) ≈




0.8439
−0.1473
−0.5184


. This is of course just the image under the Hopf

map of the dominant eigenvector of C. Sometimes the spiral crosses between

upper and lower hemispheres, sometimes not, depending on the initial condi-

tion.

• The maximum time the simulation was allowed to run for was tmax = 400, and

the behaviour did not change over that time.

• The fact that in each case the phase required to maintain horizontality in

S3 settles to a curve with constant gradient, while the image of the solution

path on S2 also settles to a fixed point implies that the solution v(t) on S3

is attracted to and remains on a single periodic (i.e. S1) orbit. To see this,

observe that since the point on the base manifold is stationary, any motion

in the bundle must be only in the fibre over that point. But since the phase

gives a measure of the motion along fibres, and the phase required to maintain

horizontality is strictly increasing with t, there must be continuous motion in

the bundle, which must necessarily be unidirectional inside a single S1 fibre,

and which therefore implies periodicity of the trajectory in the bundle space.
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This is a very interesting piece of data to be able to extract from the system

simply by looking at the problem from this new bundle perspective. To verify

that v(t) does in fact settle to a periodic orbit, the complex coordinates were

plotted for a range of initial conditions; in each case the predicted behaviour

was observed. Figure 4.5 shows plots of the two complex coordinates, the

first shows the trajectory in C of the first complex coordinate, v1(t) + iv3(t),

and the second shows the trajectory in C of the second complex coordinate,

v2(t) + iv4(t). The plots confirm that the solution settles to a periodic orbit

in S3.

Figure 4.5: Plots of the two complex coordinates, illustrating periodicity

• Thus we are able to extract interesting geometrical information about the

global dynamics of u̇ = Cu just by looking at the system from this new

perspective.

Another example

Trial and error was used to find the following system, which also exhibits interesting

behaviour:

C =

(
9 + (5.9 + ε)i 2 + 8i
−9 + 4i −1 + 9i

)
, soA =

(
9 2
−9 −1

)
, B =

(
5.9 + ε 8

4 9

)

(4.203)
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As in the previous example, the code integrate_real_coords1.m solves the system

numerically, but this time we use only one initial condition u(0) =

(
1 + 2i
3 + 4i

)
,

θ(0) = 0, and observe the behaviour as ε varies. Figures 4.6-4.10 show the graphical

output for the cases ε = 0, 0.01, 0.02248, 0.03, 0.05, with tmax picked appropriately

to show the relevant detail.

Figure 4.6: Phase required for parallel translation, ε = 0

Figure 4.7: Phase required for parallel translation, ε = 0.01

Remark 4.3.2. Note how the trajectories on the S2 pictures are raised off the

surface of the sphere. This is just because the underlying sphere is plotted with

diameter slightly less than 1, so that the points are easier to see.
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Figure 4.8: Phase required for parallel translation, ε = 0.02248

Figure 4.9: Phase required for parallel translation, ε = 0.03
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Figure 4.10: Phase required for parallel translation, ε = 0.05

Notes on these numerical results:

• In all these simulations the trajectories on S2 are virtually identical - from the

point of view shown in these pictures, they begin at a point on the far side of

the sphere, curl round under the sphere towards us, then spiral in to a point

just below the equator.

• In Figures 4.6 and 4.10 we have tmax = 4 in order to highlight the extra detail

in the θ(t) curve at small t, whereas in figures 4.7 and 4.9 we show longer

time-scales in order to highlight how θ(t) has constant gradient over longer

times.

• The behaviour observed in this example is very similar to the previous example:

in general the phase has a brief transitional period for small t, then evens out

to a constant gradient curve for the rest of the simulation, while the trajectory

on the base manifold is attracted to a stationary point.

• However here we see how the phase required for parallel translation differs

between different systems. ε parametrizes the systems, and as it varies between

0 and 0.05 we find that the gradient of the phase curve varies smoothly from

negative to positive.

• The sequence of figures shows explicitly how the behaviour of the systems

varies, depending on parameter ε. It shows that there is some critical value

ε = ε0 ≈ 0.2248 with a phase curve of gradient zero, which separates systems
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of positive and negative gradient phase curves. For the system with ε = ε0,

after the brief transitional period, there is no motion on the base manifold, and

also no motion within the fibre above the stationary point on the base. This

implies that the trajectory which starts at the given initial condition converges

to a fixed point on S3.

• For values of ε either side of ε0, the trajectories converge to stationary points

on the base manifold with constant periodic motion in the fibre above that

point. The direction and speed of the S1 motion are given by the gradient of

the phase curve.

• Again we confirm that these inferences are correct by plotting the trajectories

of the two complex coordinates for each of the ε values; these plots are shown

in Figures 4.11-4.15.

Figure 4.11: Plots of the two complex coordinates, ε = 0

• Note that in Figures 4.11 and 4.12 the trajectories of both complex coordi-

nates proceed in a clockwise direction, whereas in Figures 4.14 and 4.15 the

trajectories proceed in a counter-clockwise direction. This conforms with the

inference made from the gradient of the phase curve regarding the direction

of motion in the fibre.

• What these figures do not convey is the speed of the dynamics: for the values

of ε nearer to ε0, the periodic trajectory is traversed a lot slower than for those

values further from ε0. Comparing 4.13 to the other figures, we see that in
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Figure 4.12: Plots of the two complex coordinates, ε = 0.01

Figure 4.13: Plots of the two complex coordinates, ε = 0.02248
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Figure 4.14: Plots of the two complex coordinates, ε = 0.03

Figure 4.15: Plots of the two complex coordinates, ε = 0.05
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this case the trajectory consists of the first part only of the trajectories seen

in the other cases - i.e. a short path going from the initial condition to the

point of first contact with the periodic orbit. In the ε0 case, the trajectory

arrives at this point and stays there indefinitely, while for ε very close to ε0,

the trajectory arrives at this point then moves very slowly away from the

point, around the periodic orbit, and remains on that path. Thus we have an

unstable fixed point of the dynamics.

• Again, we have extracted a surprisingly large amount of important informa-

tion about the dynamics of the systems just by using this new bundle/phase

perspective. Techniques derived from these observations could potentially be

used in practical situations where specific combinations of periodic orbits and

stationary points are required to satisfy certain physical constraints.

Another example: the test-case

We now apply the concepts developed here to the test-case of Section 1.3. Recall,

the system, written in its original notation is

ux = A(x, λ)u, x ∈ R, λ ∈ Λ = C \ {(−∞,−1]}, u =

(
u1

u2

)
∈ C2 (4.204)

where

A(x, λ) =

(
0 1

λ+ 1− 2f(x) 0

)
(4.205)

f(x) =
3

2
sech2 1

2
x (4.206)

and we want to integrate the system from x = L to −L, using as initial condition

u∞(λ) = ξ+(λ) =

(
1

−
√
λ+ 1

)
, (4.207)

which is the eigenvector corresponding to eigenvalue µ+(λ) = −
√
λ+ 1 of the system

at infinity, A∞(λ).

Now if we translate this to the notation of this section (taking care not to get

the two matrices A = A(x, λ) of (4.205) and A = Re(C) of (4.141) confused, and

using independent variable t instead of x), we get

C =

(
0 1

λ+ 1− 2f(t) 0

)
= A+ iB ∈M2(C) (4.208)
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A =

(
0 1

Re(λ) + 1− 2f(t) 0

)
, B =

(
0 0

Im(λ) 0

)
∈M2(R) (4.209)

so

Σ =

(
A −B
B A

)
=




0 1 0 0
Re(λ) + 1− 2f(t) 0 −Im(λ) 0

0 0 0 1
Im(λ) 0 Re(λ) + 1− 2f(t) 0


 (4.210)

then the equation of motion to solve is

v̇ = (I4 − vvT )Σv, v =




x1

x2

y1

y2


 =

1

||u||




Re(u1)
Re(u2)
Im(u1)
Im(u2)


 ∈ S

3 ⊂ R4 (4.211)

and the parallel translation equation to be solved in conjunction with this is

θ̇(t) = −〈K3v(t),Σv(t)〉 (4.212)

The initial condition from the original system for the first of these two dynamics

equations translates to

v(L) =




x1(L)
x2(L)
y1(L)
y2(L)


 =

1√
uH∞u∞




1

Re(−
√
λ+ 1 )

0

Im(−
√
λ+ 1 )


 ∈ S

3 ⊂ R4 (4.213)

and for the second equation the initial value is arbitrary and does not affect the shape

of the resulting θ(t) curve; we take θ(L) = 0. We take L = 10 and solve the system

for t = L to −L for a range of values of λ, in order to provide more concrete examples

of how θ(t) behaves. The Matlab code integrate_real_coords2.m implements

these simulations, and Figures 4.16-4.21 show the graphical output for the cases

λ = −1 + 0.5i, 0.1 + i, 0.8 + 0.1i,−0.75,−i,−1− 0.1i. The figures show three plots;

the left plot shows the λ value under consideration, plotted alongside the three

eigenvalues of the system (on the real axis); in the middle is the phase plot; and on

the right is the image of the solution path under the Hopf map, as before.

Points to note about these numerical results:

• There are clearly some very interesting patterns here, and the phase θ(t) ap-

pears to vary with λ in a nontrivial way.
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Figure 4.16: λ = −1 + 0.5i

Figure 4.17: λ = 0.1 + i

Figure 4.18: λ = 0.8 + 0.1i
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Figure 4.19: λ = −0.75

Figure 4.20: λ = −i

Figure 4.21: λ = −1− 0.1i
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• The image paths on S2 also appear to be related to the values of λ used.

• The phase seems to be approximately a straight line with gradient proportional

to Im(λ) with an S-shaped bend around the t = 0 region.

• As Im(λ) crosses the real axis the image path on S2 seems to expand from a

small closed loop to a larger closed loop, which then becomes a great circle

on the sphere, and finally crosses over to the other side of the sphere and

then contracts to a smaller closed loop approximately the mirror image of the

original loop.

• The Matlab code integrate_real_coords_phaselattice.m was written to

provide another perspective on the situation, by presenting all the phase data

at t = −L together in one picture. The program calculates the final phase

θ(−L) for a lattice of λ values, and plots the resulting data as a surface over

the λ−domain, C. Figures 4.22 and 4.23 show the graphical output. Notes

about these figures:

– The horizontal plane axes are labelled by the indices of the surface array,

not the actual real and imaginary λ components.

– In Figure 4.22 the Re(λ) axis goes from −4 to +8, and the Im(λ) axis

goes from −2.1i to +2i. The surface mesh has intervals of 0.13 in both

the real and imaginary directions.

– Figure 4.23 is a close-up version of Figure 4.22, zoomed in on a small

region containing the three discrete system eigenvalues, at −3
4
, 0, 5

4
on

the real axis.

– In Figure 4.23 the Re(λ) axis goes from −0.9 to +1.6, and the Im(λ) axis

goes from −0.1i to +0.1i. The surface mesh has intervals of 0.013 in both

the real and imaginary directions.

– These pictures are fascinating. The first figure shows the general pattern

of the phase, and how the real component of λ seems to be driving the

magnitude of the phase, while the imaginary part seems to determine

its sign. The figure even shows the location of the branch cut in the

λ-domain (where the continuous spectrum of the system is located), as

we have a sign change in θ(−L) on either side of the cut.
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Figure 4.22: Test-case phase surface.
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Figure 4.23: Close-up of test-case phase surface, showing ripples at eigenvalue loca-

tions (λ = −3
4
, 0, 5

4
).

74



4.3 Dynamics in the Hopf bundle using the quaternionic matrices

– The second figure shows that when we look in detail at a small region con-

taining the system’s discrete eigenvalues, we see that the phase at −L is

being affected in some way by the presence of the eigenvalues, manifested

in slight ripples in the surface. This suggests that the information we

are extracting by isolating the phase in this manner may be very deeply

linked to fundamental system properties such as eigenvalue location, and

that consequently there may be potential for developing methods which

employ such a link to analyze systems in greater depth, or with greater

ease, than is currently possible.

4.3.3 Summary of numerics

These numerical examples demonstrate the wealth of information which appears to

be inextricably linked to the phase of a path on S3, and the extent to which we may

be able to extract crucial geometrical information about the dynamics of systems

just by reframing problems in terms of fibre bundles and phases.
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Chapter 5

Phase computations for the

test-case and the central

conjecture

In this chapter we consider the test-case in closer detail; we define three types of

path in the system space, then calculate the phases associated with these paths. The

numerical results here lead to the central conjecture of the thesis. Note that even

though this system is on C2 and could therefore be treated using the simplified Hopf

quaternion notation and equations of Chapter 4, we instead return to the general

vector notation of Chapter 3, in order to place the phase calculation process in a

general Hopf bundle setting, since subsequent numerical investigations will involve

systems of higher dimensions.

5.1 Defining paths in the test-case system space

Recall, the test-case is the system

ux = A(x, λ)u, x ∈ R, λ ∈ Λ = C \ {(−∞,−1]}, u = u(x, λ) =

(
u1

u2

)
∈ C2

(5.1)

with

A(x, λ) =

(
0 1

λ+ 1− 2f(x) 0

)
, f(x) =

3

2
sech2 1

2
x (5.2)

and we have

A∞(λ) = lim
x→±∞

A(x, λ) =

(
0 1

λ+ 1 0

)
(5.3)
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5.1 Defining paths in the test-case system space

with eigenvalue/vector pairs

µ±(λ) = ∓
√
λ+ 1, ξ±(λ) =

(
1

∓
√
λ+ 1

)
(5.4)

and the eigenvector corresponding to the eigenvalue of most negative real part, i.e.

corresponding to the space of solutions to (5.1) bounded as x→ +∞, is written

u∞(λ) = ξ+(λ) =

(
1

−
√
λ+ 1

)
(5.5)

Being doubly asymptotically constant in x (and well-behaved ∀x), the system is

amenable to analysis by the Evans function method. Consideration of this method

reveals that due to the structure of the problem there are certain preferred paths

within the system space, namely paths which involve eigenvectors of the system-at-

infinity, A∞. Then, since it is precisely this structure which permits the application

of the Evans function method, and which hence leads to the determination of discrete

eigenvalues λ of the underlying problem (see Section 1.2), we investigate paths based

on this asymptotic structure, with a view to exploring whether there exist any further

associations between the system and its eigenvalues. Define three types of path in

the system space as follows:

• Path γ1 - paths of eigenvectors of A∞(λ). Since both the system-at-infinity

and its eigenvector u∞(λ) depend on λ, u∞ can be regarded as a map from

the parameter space to the system space, u∞ : Λ → C2. Then let λ : R → Λ

be a path in the parameter space Λ, so that the composition (u∞ ◦ λ) is a

path of eigenvectors of A∞(λ) in C2, along which the associated phase may

be calculated. We call this type of path a γ1 path. Furthermore, writing

spherical projection as P , the map (P ◦ u∞ ◦ λ) : R → S3 is the path on

S3 along which the connection form is integrated to give the phase associated

with a γ1 path. We can then pick the λ-path to be an interesting path in

Λ; in this work we focus on closed loops in λ-space, with special emphasis on

consideration of whether the path encircles any of the discrete eigenvalues of

the underlying system or not. In choosing a λ-path in Λ, attention should be

paid to the location of known eigenvalues, continuous spectrum and any other

system-specific properties.

• Path γ2 - paths of solutions to ux = Au. For any given λ ∈ Λ, solving

(5.1) with initial condition u∞(λ) yields a path of points in C2 along which

the associated phase may be calculated. We call this type of path a γ2 path.
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5.1 Defining paths in the test-case system space

Spherical projection of this solution path again gives the path on S3 along

which the connection form is integrated to give the phase associated with a γ2

path. Note that since the initial condition u∞(λ) is defined as the eigenvector

to the system “at infinity”, generating a γ2 path by solving ux = Au numer-

ically from this vector requires picking a real number L > 0 to represent the

value of x in this limit. L should be large enough to give an acceptably small

error. Thus u(L, λ) = u∞(λ) is the initial condition from which numerical

integration begins, and integration proceeds in the negative x direction, down

to some other chosen value x = L′ < L. In general for γ2 paths, as with all

numerical integration, attention should be paid to properties of the system

which may affect the outcome of the computation, such as the presence of

singularities of the system.

• Path γ3 - paths of flowed-forward paths of eigenvectors of A∞(λ). To

generate a γ3 path simply combine a γ1 path with a host of γ2 paths: take

a γ1 path on C2; then use each point of this path as the initial condition for

solving ux = Au, thereby generating a collection of γ2 paths on C2. Define

a γ3 path to be the set of end points of the γ2 paths, i.e. the collection of

solution vectors u(L′, λ).

From Chapter 3 we have that for γ1 and γ3 paths the associated phase is given by

expression (3.35):

θ(s) =

∫ (Im(u(s)Hus(s))

(u(s)Hu(s))

)
ds

while for γ2 paths this reduces to (3.54):

θ(s) =

∫ (Im(u(s)HAu(s))

(u(s)Hu(s))

)
ds

We illustrate these three paths in Figure 5.1, suppressing dimensions where ap-

propriate.

Remark 5.1.1. We could just as easily base the whole procedure around the eigen-

vectors of A−∞(λ). (In this case a γ1 path would be a path of eigenvectors of A−∞(λ),

a γ2 path would be the solution path formed by integrating in the positive x direc-

tion, from −L to L′ > −L, and a γ3 path would again be a path of γ2-endpoints,

u(L′, λ).) The effect of the asymptotic structure of the system on the results and

concepts presented here could be a subject of further study beyond this thesis, in

particular, looking at what happens if the systems A∞(λ) and A−∞(λ) are not the

same; or if the system is only asymptotically constant in one of the limits, but not

both (this case is briefly discussed in Section 6.3).
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5.1 Defining paths in the test-case system space

λ : R→ C

[ ] R

We begin with a path of points λ(s) in C...

C

u∞ : C→ C2

... then u∞ maps this path of vectors
in C to a γ1 path of vectors in C2...

...then solving ux = Au from x = L to L′

generates γ2 paths in C2...

γ1

γ2

γ3P : C2 → S3

...and these three types of path in
C2 project to paths on S3 along
which we integrate the connection
form ω to calculate the phase...

...and of course all these paths may then
be mapped onto S2 by the Hopf map.

π : S3 → S2S3 ⊂ C2

S2 ⊂ R3

...the end-points of which
together form a
γ3 path in C2...

Figure 5.1: Illustrating the three types of path on S3
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5.2 Numerical results and details of path parametrization

5.2 Numerical results and details of path parametriza-

tion

5.2.1 Path γ1

γ1 parametrization

To generate γ1 paths we use circular λ-paths in C. Take centre λ0 and radius r, and

let s be the path parameter:

λ(s) = λ0 + reis λ0 ∈ C, r ∈ R+, s ∈ [0, 2π] (5.6)

then use u∞ to map this to a path u(s) in C2:

u(s) = u∞(λ(s)) =

(
1

−
√
λ(s) + 1

)
(5.7)

then since the phase curve associated with this path is given by

θ(s) =

∫ (Im(u(s)Hus(s))

(u(s)Hu(s))

)
ds (5.8)

(as in (3.35)) and u(s) = u(λ(s)) here, we have us = uλλs, with

λs(s) = ireis (5.9)

uλ =

(
0

− 1

2
√
λ(s)+1

)
(5.10)

so the final expression for the associated phase curve for a γ1 path is

θ(s) =

∫
Im[uHuλλs]

uHu
ds (5.11)

and the phase change around a γ1 path is

∆θ =

∫ 2π

0

Im[u(s)Huλ(s)λs(s)]

u(s)Hu(s)
ds (5.12)

Using the Runge-Kutta algorithm ode45, the Matlab code integration_at_L.m

performs this numerical phase calculation. The solver ode45 is used because it is

the standard high-performance workhorse for most ODE problems dealt with in

Matlab, and it is usually the most efficient [18]. Unless stated otherwise, the default

absolute and relative tolerances of 10−6 and 10−3 respectively are used throughout

all computations presented in this thesis. As always there is a balance between

efficiency and accuracy, but in general it is found that the numerics produced using

default tolerances provide sufficiently accurate results to represent well the large-

scale patterns observed here.
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5.2 Numerical results and details of path parametrization

Remark 5.2.1. An alternative numerical scheme was also developed and imple-

mented in order to verify the accuracy of the numerical results produced using the

above code. This verification process consisted of deriving and solving the dynamics

equations induced on the natural atlas of charts of CP n−1 (see e.g. [21], p.223). The

results showed the two numerical methods to be consistent.

For λ0 = 1 + 0.2i, r = 0.8 and θ(0) = 0, integration_at_L.m produces the

graphical output shown in Figure 5.2. (The filename refers to the fact that L is the

large number used to represent ∞.)

Figure 5.2: Graphical output for γ1 path with λ0 = 1 + 0.2i, r = 0.8

• The plot on the left shows the circular path traced out by λ(s) as s goes

from 0 to 2π, plus the three discrete eigenvalues of the system marked with

asterisks. (Recall there is a continuous spectrum on the real axis from −1 to

−∞.)

• The plot in the centre shows how the phase θ(s)/2π varies as the λ-path

is traversed. Note the scale factor 2π; although it has little effect on these

results, this factor becomes important in future calculations, so we introduce

it here for consistency.

• The plot on the right shows the image on S2, under the Hopf map, of the

path on S3 obtained by spherical projection of the γ1 path in C2. πi represents

the ith component of the Hopf map, while v represents points of the path on

S3 written as complex 2-vectors as usual.

As the program runs, it traces out the three curves, point by point, simultaneously.
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5.2 Numerical results and details of path parametrization

γ1 numerical results

Figures 5.3-5.9 show the same trio of output graphics for a variety of λ-paths, as

defined by the λ0 and r values, which are shown in the figures, again with θ(0) = 0.

Table 5.1 summarizes the results for the γ1 paths presented here.

Figure 5.3: Graphical output for γ1 path with λ0 = i, r = 0.8

Figure 5.4: λ0 = 2 + i, r = 0.8

γ1 comments

The key points to note about the γ1 path results (including both the results presented

here and various other paths, of which these results are representative) are:

• The phase curve is periodic plus some slight shift away from the initial θ value

(zero here).
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5.2 Numerical results and details of path parametrization

Figure 5.5: λ0 = 0, r = 0.8

Figure 5.6: λ0 = 1, r = 0.8

Figure 5.7: λ0 = −i, r = 0.8
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5.2 Numerical results and details of path parametrization

Figure 5.8: λ0 = −i, r = 0.5

Figure 5.9: λ0 = 2− i, r = 0.8
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5.2 Numerical results and details of path parametrization

Figure No. centre of λ-

path, λ0

radius of λ-

path, r

No. of system eigenvalues

contained within λ-loop

∆θ/2π

5.2 1 + 0.2i 0.8 1 0.00918

5.3 i 0.8 0 0.02277

5.4 2 + i 0.8 0 0.00265

5.5 0 0.8 2 0.05563

5.6 1 0.8 1 0.00932

5.7 −i 0.8 0 0.02277

5.8 −i 0.5 0 0.00772

5.9 2− i 0.8 0 0.00265

Table 5.1: Summary of numerical results for γ1 paths shown

• This shift factor appears to depend on the proximity of the λ-path to the

continuous spectrum of the system: the closer it passes to this region, the less

symmetric the phase curve is and the larger the shift. The system has a singu-

larity at points on the continuous spectrum (the nearer the λ-path passes to

this region, the closer the matrix A(x, λ) comes to being degenerate for some

x value). This singular behaviour may be leading to greater numerical inaccu-

racies being generated in this region. However, tuning of the stepsize variable

and absolute and relative tolerances, and even the application of alternative

ODE solvers, failed to eliminate these shift factors. Thus a complete explana-

tion of this phenomenon would require a more rigorous study than we propose

here, necessarily addressing the relative merits of various numerical methods

under degenerate conditions; this could easily form the basis of a future study

beyond this thesis.

• Thus the phase change ∆θ around γ1 paths appears to be zero plus some

fluctuation, possibly due to numerical error.

• The path images on S2 are closed, circular paths. Their being closed is a

consequence of the λ-paths in C being closed, while their being circular is a

consequence of both the λ-paths being circular and the precise forms of u∞

and the Hopf map, since no numerics are used to generate these paths.

• The λ-path radius does not in itself appear to affect the phase curve.

• The system is symmetric about the real axis in the λ-plane.
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5.2 Numerical results and details of path parametrization

5.2.2 Path γ2

γ2 parametrization

To generate γ2 paths we fix λ then solve (5.1) numerically from x = L down to

x = L′ < L with initial condition

u(L, λ) = u∞(λ) =

(
1

−
√
λ+ 1

)
, (5.13)

L is the large number used to approximate∞ in computations. The path parameter

is just the independent variable x in the ODE and the associated phase curve is given

by

θ(x) =

∫
Im(u(x)HAu(x))

(u(x)Hu(x))
dx (5.14)

as in (3.54), and the phase change is

∆θ =

∫ L′

L

Im[uHAu]

uHu
dx (5.15)

So to calculate the associated phase along γ2 paths we append this equation for θ(x)

to the ODE system (5.1) and integrate it in parallel. The Matlab code

integrate_x_direction.m does this and, for λ = 1+i, L = 10 = −L′ and θ(L) = 0,

produces the graphical output shown in Figure 5.10. Note that throughout this sec-

Figure 5.10: Graphical output for γ2 path with λ = 1 + i, L = 10 = −L′

tion 5.2.2 only, the absolute and relative tolerance parameters used within ode45 are

set to 10−12 and 10−9 respectively (in order to give the clearest diagrams possible).

The format of the diagrams is as before: the plot on the left shows the single value

of λ being used (the plus sign), along with the three eigenvalues of the system (the

asterisks); the plot in the middle shows how θ(x) changes as the path parameter
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5.2 Numerical results and details of path parametrization

goes from L to L′ in the calculation; and the plot on the right shows the image

on S2, under the Hopf map, of the projection of the γ2 path on S3. Again, as the

program runs, the two curves on the right are traced out simultaneously point by

point. Figure 5.11 shows a close-up of the plot on the right: the image trajectory

on S2 is roughly teardrop-shaped. However, what these still figures do not convey is

Figure 5.11: Close-up of right-most plot of Figure 5.10

the dynamics of the trajectory: the path begins at the apex of the teardrop, travels

around the boundary of the shape then returns, along the other arm, to the apex.
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5.2 Numerical results and details of path parametrization

γ2 numerical results

Figures 5.12-5.22 show the same trio of graphics for a selection of λ values, with

L = 10 = −L′ fixed. The spheres on the right have been rotated appropriately to

give the best view of the trajectory.

Figure 5.12: Graphical output for γ2 path with L = 10 = −L′, λ = −1 + i

Figure 5.13: λ = −1− i

Figures 5.23-5.25 show the trio of graphics for 3 different values of L = −L′,
with λ = 0.5− 0.5i fixed.

Table 5.2 summarizes the results for the γ2 paths presented here.

γ2 comments

The key points to note about these numerical results are as follows:

• These results are the same as those presented in Section 4.3.2 of Chapter 4,

since we now classify the path investigated there as a γ2 path.
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5.2 Numerical results and details of path parametrization

Figure 5.14: λ = −0.9 + 0.1i

Figure 5.15: λ = −0.75

Figure 5.16: λ = −0.5 + 0.5i
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5.2 Numerical results and details of path parametrization

Figure 5.17: λ = −0.5

Figure 5.18: λ = 0

Figure 5.19: λ = 0.5 + 0.5i
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5.2 Numerical results and details of path parametrization

Figure 5.20: λ = 1.25

Figure 5.21: λ = 2 + 1.5i

Figure 5.22: λ = 2.5
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5.2 Numerical results and details of path parametrization

Figure 5.23: λ = 0.5− 0.5i, L = 10 = −L′

Figure 5.24: λ = 0.5− 0.5i, L = 20 = −L′

Figure 5.25: λ = 0.5− 0.5i, L = 50 = −L′
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5.2 Numerical results and details of path parametrization

Figure No. λ L (= L′) ∆θ/2π

5.10 1 + i 10 1.4295

5.12 −1 + i 10 2.9440

5.13 −1− i 10 -2.9440

5.14 −0.9 + 0.1i 10 1.3373

5.15 −0.75 10 0.0000

5.16 −0.5 + 0.5i 10 1.7737

5.17 −0.5 10 0.0000

5.18 0 10 0.0000

5.19 0.5 + 0.5i 10 1.0315

5.20 1.25 10 0.0000

5.21 2 + 1.5i 10 1.5476

5.22 2.5 10 0.0000

5.23 0.5− 0.5i 10 -1.0315

5.24 0.5− 0.5i 20 -1.6727

5.25 0.5− 0.5i 50 -3.5961

Table 5.2: Summary of numerical results for γ2 paths shown

• In contrast to γ1 paths, γ2 paths are not periodic but have fixed sign gradient

or zero gradient - depending on Im(λ).

• These results essentially combine to form the same phase surface as shown in

Figure 4.22.

• For Im(λ) 6= 0 there is a symmetrical step in the phase curve in a region about

x = 0. The size and location of this step is resistant to changes in L, as shown

in Figures 5.23-5.25.

• For Im(λ) = 0, θ(x) is constant and the image trajectory on S2 is all or part

of a great circle, as shown in Figures 5.15, 5.17, 5.18, 5.20 and 5.22. This

includes the cases where λ is one of the system eigenvalues, but this has no

apparent effect on the results.

• The image curves on S2 are closed and depend closely on Im(λ). For large

|Im(λ)| we get tiny loops, as in Figure 5.21. For smaller |Im(λ)| we get larger

teardrop shapes, as in Figure 5.19. For Im(λ) = 0 we get great circles or parts

thereof, as in Figure 5.15. The sign of Im(λ) dictates which side of S2 the

trajectory appears on: as Im(λ) goes from large positive through zero to large
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5.2 Numerical results and details of path parametrization

negative, small loops turn to larger teardrops on one side of S2, which turn to

a great circle then cross over to large teardrops then small loops on the other

side of S2.

• The image curves on S2 show interesting behaviour when λ is near the con-

tinuous spectrum (and Im(λ) 6= 0), as shown in Figures 5.14 and 5.16.

• The system is symmetric about the real axis in the λ-plane.

As interesting and deserving of further study these results may be, they form

only part of a larger picture, which is described in the following γ3 section.

5.2.3 Path γ3

γ3 parametrization

To generate γ3 paths we begin with circular λ-paths in C, as in the γ1 case, parametriz-

ing them just as before

λ(s) = λ0 + reis λ0 ∈ C, r ∈ R+, s ∈ [0, 2π] (5.16)

Again use u∞ to map this λ-path to a closed loop in C2. Then use points on this

loop as initial conditions for generating γ2 paths emanating from these points, the

end points of which combine to form the points of the γ3 path. Using this method

the parameter for the λ-path, s, is also the parameter for the γ3 path. We write

the points of the γ3 path as u(L′, λ(s)); this is the vector in C2 which results from

solving ux = Au from L to L′ with initial condition u∞(λ(s)), and is consistent with

previous notation.

So the expression for the phase curve associated with a γ3 path is

θ(s) =

∫
Im[u(L′, λ(s))Hus(L

′, λ(s))]

u(L′, λ(s))Hu(L′, λ(s))
ds (5.17)

and the phase change around the γ3 path is

∆θ =

∫ 2π

0

Im[u(L′, λ(s))Hus(L
′, λ(s))]

u(L′, λ(s))Hu(L′, λ(s))
ds (5.18)

Now, in order to compute this phase, the value of the derivative of the path vector

u w.r.t. path parameter s, us(L
′, λ(s)), must be known. But since there are no

analytic expressions for any of these vectors, an approximation must be calculated

explicitly at each integration step. The numerical procedure developed to evaluate
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5.2 Numerical results and details of path parametrization

(5.18) here uses the Matlab procedure ode45, which is a fourth-order Runge-Kutta

method with adaptive stepsize; it requires both of the values u(L′, λ(s)), us(L
′, λ(s))

for whichever value of s it chooses at each step. u(L′, λ(s)) is calculated as usual,

and us(L
′, λ(s)) is constructed as follows. For a given parameter value s0 ∈ (0, 2π),

we approximate the derivative us(L
′, λ(s0)) by

us
∣∣
s0

=
u(L′, λ(s0 + δ))− u(L′, λ(s0 − δ))

2δ
(5.19)

for small, real δ. The expressions u(·, ·) on the r.h.s. are of course the vectors

obtained by integrating the system ux = Au from L to L′ from initial conditions

u(L, λ(s0 + δ)) = u∞(λ(s0 + δ)) and u(L, λ(s0 − δ)) = u∞(λ(s0 − δ)) respectively.

Figure 5.26 illustrates the procedure clearly. It also shows that close attention must

be paid to the accuracy of the approximation us(L
′, λ(s0)), because having two

parameter values close together does not guarantee that the corresponding points

on the γ3 path are close together, and it is these latter values which are used to

calculate us.

The Matlab code integration_at_L_prime.m implements the procedure, cal-

culating ∆θ around paths of type γ3, and for λ0 = 1 + 0.2i, r = 0.8, θ(0) = 0,

L = −L′ = 10 and δ = 2π/10000, produces the graphical output shown in Figure

5.27.

γ3 numerical results

Graphical output for the same selection of values of λ0 and r as for the γ1 paths in

Section 5.2.1 is shown in Figures 5.28-5.34 (still with θ(0) = 0, L = −L′ = 10 and

δ = 2π/10000). The plots follow the same format as previously.

Following these, Figures 5.35-5.40 clearly show the effect of fixing the centre of

the λ-path, λ0 = 2− i, while varying its radius, r.

Table 5.3 summarizes the results for the γ3 paths presented here.

γ3 comments

The key points to note about the numerical results for γ3 paths are:

• The phase change ∆θ is approximately equal to the number of discrete eigen-

values contained within the loop in λ-space.

• The path images on S2 are the same as the path images on S2 for the corre-

sponding γ1 paths. This is consistent with the fact that the images on S2 of

the γ2 paths are closed.
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5.2 Numerical results and details of path parametrization

P : C2 → S3

S3 ⊂ C2

u∞ : C→ C2

λ : R→ C, λ(s) = λ0 + reis

γ1

γ2

γ3

[ ] R

C

s = 0 s = 2π

u∞(λ(s0 − δ))
u∞(λ(s0))

u∞(λ(s0 + δ))

λ(s0)

u(L′, λ(s0 − δ))

u(L′, λ(s0))

u(L′, λ(s0 + δ))

{These three values are
obtained by solving ux = Au

Only the middle of these three points,

u(L′, λ(s0)), is used directly in the

generated solely in order to calculate

phase calculation, the other two are

us|s0
= u(L′,λ(s0+δ))−u(L′,λ(s0−δ))

2δ

s0 s0 + δs0 − δ

λ(s0 + δ)

λ(s0 − δ)

the approximate derivative

ux = Au

Figure 5.26: Calculating us
∣∣
s0
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5.2 Numerical results and details of path parametrization

Figure 5.27: Graphical output for γ3 path with λ0 = 1 + 0.2i, r = 0.8

Figure 5.28: Graphical output for γ3 path with λ0 = i, r = 0.8

Figure 5.29: λ0 = 2 + i, r = 0.8
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5.2 Numerical results and details of path parametrization

Figure 5.30: λ0 = 0, r = 0.8

Figure 5.31: λ0 = 1, r = 0.8

Figure 5.32: λ0 = −i, r = 0.8
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5.2 Numerical results and details of path parametrization

Figure 5.33: λ0 = −i, r = 0.5

Figure 5.34: λ0 = 2− i, r = 0.8

Figure 5.35: λ0 = 2− i, r = 0.5
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5.2 Numerical results and details of path parametrization

Figure 5.36: λ0 = 2− i, r = 1.0

Figure 5.37: λ0 = 2− i, r = 1.5

Figure 5.38: λ0 = 2− i, r = 2.0
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Figure 5.39: λ0 = 2− i, r = 2.5

Figure 5.40: λ0 = 2− i, r = 3.0
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5.3 The central conjecture

Figure No. centre of λ-

path, λ0

radius of λ-

path, r

No. of system eigenvalues

contained within λ-loop

∆θ/2π

5.27 1 + 0.2i 0.8 1 1.0004

5.28 i 0.8 0 0.02462

5.29 2 + i 0.8 0 -0.0002

5.30 0 0.8 2 2.0515

5.31 1 0.8 1 0.9923

5.32 −i 0.8 0 0.02549

5.33 −i 0.5 0 0.00891

5.34 2− i 0.8 0 0.000539

5.35 2− i 0.5 0 -0.00130

5.36 2− i 1.0 0 -0.00043

5.37 2− i 1.5 1 1.0115

5.38 2− i 2.0 1 1.0115

5.39 2− i 2.5 2 2.0478

5.40 2− i 3.0 3 2.9486

Table 5.3: Summary of numerical results for γ3 paths shown

• Again, the proximity of the λ-path to the continuous spectrum affects the

numerics: the further away the λ-path is from the continuous spectrum, the

closer ∆θ is to an exact integer. This will be for the same reason as in the γ1

path case.

• The system is symmetric about the real axis in the λ-plane, as shown in Figures

5.28 and 5.32.

5.3 The central conjecture

Note that the computational procedure developed above applies equally well to

systems of complex dimension greater than two, provided one important clarification

is first made: the definition of γ1 paths - which are of course essential for the

generation of both γ2 and γ3 paths.

Definition 5.3.1. For n ≥ 2 let the vector u∞(λ) ∈ Cn be the eigenvector of A∞(λ)

corresponding to the eigenvalue of most negative real part. A γ1 path is then a path

composed entirely of these vectors, just as before.
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5.3 The central conjecture

This definition is consistent with the test-case above, and has its origins in the

Evans function method, where the subspace of solutions bounded as x → ∞ is

required for the numerical procedure. Now, the numerical results presented here for

the test-case are very striking and lead us to propose the following conjecture:

For an eigenvalue problem ux = A(x, λ)u in Cn with the asymptotic

structure described above (e.g. in (1.2)), the phase change ∆θ/2π as-

sociated with a γ3 path is equal to the number of discrete eigenvalues

of the system contained within the loop in λ-space from which the γ3

path is generated, provided the λ-path does not pass through any system

eigenvalues or regions of continuous spectrum.

Recall, the phase change ∆θ is a measure of the motion (spinning) required in the

fibres of the Hopf bundle to keep the path induced on S2n−1 by spherical projection

of the γ3 path horizontal w.r.t. the natural connection. That this seemingly obscure

quantity ∆θ/2π should be an integer, and moreover that this integer should be

linked to a fundamental system property such as the presence or absence of a discrete

eigenvalue is very interesting. It shows that the solution of ux = Au in this manner

gives rise to a kind of λ-space-dependent differential evolution of the spinning in the

fibres of the induced Hopf bundle, which is revealed in the integration of the natural

connection form along paths derived from closed loops in λ-space.

Remark 5.3.1. Furthermore, ∆θ can be viewed as a holonomy of the Hopf bundle.

To see this, reverse the perspective on the whole scenario: begin with the paths on

the base manifold S2 and observe that with each of these is associated a quantity ∆θ,

which represents the shift in the fibre resulting from traversing the projection of the

γ3 path on S3. But this quantity depends not only on the start and finish points of

the paths, but on the specific paths taken on the base: two paths on S2 which start

and finish at exactly the same point will yield different values of ∆θ if the numbers of

discrete system eigenvalues encircled by the underlying loops in λ-space are different.

Remark 5.3.2. The concept of holonomy occurs frequently in physics, giving rise

to various phase quantities similar to that considered here, induced by either given

dynamics on a system space or the underlying geometry of the system space itself.

In particular, we have the Berry phase of quantum physics [31], [32], [33], and the

geometric phase of classical mechanics [32], [34], [35]. The latter is closely linked

to the content of this thesis; in fact the phase calculated here is an example of a

“reconstruction phase” (e.g. [14] p.168) of an equivariant dynamical system.
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5.4 Further numerical experiments

Now, the phase change quantity here has been developed purely by considering

solutions to ODEs in relation to an intrinsic Hopf bundle framework, and computing

an associated bundle-theoretic quantity generated by these solutions. However, the

similarity with certain previous results cannot be overlooked. In particular, the

construction here is strikingly similar to the winding number of the Evans function

around a closed contour, due to Alexander, Gardner and Jones [36]. Known as the

stability index, this feature of the problem has been studied and applied extensively,

and extended by Nii [37] and Austin and Bridges [38]. Although the theoretical

foundation of the phase here appears to be very different to previous approaches,

it cannot be ignored that we do indeed appear to have found a new algorithm for

computing the Chern number of the augmented unstable bundle. If this is the case

then the question arises as to what the relative merits of the two methods are.

This will be a matter for further research, as will the development of the precise

theoretical connection between these two apparently very different approaches to

the same problem.

5.4 Further numerical experiments

Further numerical testing confirms that the ∆θ result of the central conjecture per-

sists under a variety of conditions, for example if we vary further the radius or

centre of the circular path so as to contain different isolated eigenvalues, or different

numbers of them, or if we vary L or L′ in certain ways (see Section 5.4.2 below).

Note that if the λ-path used to generate a γ3 path passes through a discrete

eigenvalue, the ∆θ result does not hold. Figures 5.41-5.43 show what happens in

this case, for paths with centre λ0 = −i and radii r = 0.99, 1.00, 1.01.

Figure 5.41: λ0 = −i, r = 0.99
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5.4 Further numerical experiments

Figure 5.42: λ0 = −i, r = 1.00

Figure 5.43: λ0 = −i, r = 1.01

Figure 5.44 shows what happens when the λ-path passes through the continuous

spectrum. In this case, when the branch cut in C is crossed, it basically reverses

Figure 5.44: λ0 = −2− 0.5i, r = 0.8
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5.4 Further numerical experiments

the sign of everything: the phase curve gradient is reversed instantaneously (the

three distinct segments would form a smooth curve if the latter two were flipped);

and the path on S2, which is traversing the arc shown on the upper hemisphere,

instantaneously jumps to a similar arc on the upper hemisphere on the other side

of the sphere (directly behind where the first arc is, though this can’t be seen on

the figure here). We now proceed with a few simple modifications of the existing

computer code.

5.4.1 Searching for eigenvalues

The program integration_at_L_prime.m from Section 5.2.3 has been extended to

create an algorithm which, assuming the validity of the central conjecture, searches

C for discrete system eigenvalues by calculating the phase-changes associated with a

large number of γ3 paths parametrized by small circular paths centred at the nodes

of a lattice of points in C. The new program, called lambda_plane_eval_search.m,

produces the graphics shown in Figures 5.45 and 5.46.

The first plot of Figure 5.45 shows the value of ∆θ/2π (as an asterisk) at each

of the lattice nodes, and the small circular paths traversed in parameter space; the

second shows θ(s)/2π plotted against s along each of the paths, with all the different

plots superimposed upon one another. These figures show clearly how the three

eigenvalue-containing loops give ∆θ/2π ≈ 1, while all other paths give ∆θ/2π ≈ 0.

Figure 5.46 shows a contour plot of the same phenomenon (which, although clearly

not necessary in this simple case, serves as an introduction to the graphics format

used in subsequent numerics where phase results are less apparent). Thus we have a

numerical method of searching the complex plane for discrete eigenvalues. Despite

its simplicity, this search method has the extremely desirable property of being

global in nature, the consequences of which will be seen in the next chapter.

5.4.2 Varying the x-integration range lower limit L′

We briefly show how varying the lower limit, L′, of the ux = Au integration em-

bedded within the phase calculation for paths of type γ3 affects the value of the

resulting phase change ∆θ. The Matlab code varying_L_prime.m calculates the

phase associated with paths of type γ3 for a whole range of values of L′, from L

right down to −L, then plots these against the resulting ∆θ/2π values, as shown

in Figure 5.47. The numerical results show that when L′ is near L (here L = 10)

the phase result is roughly the same as the phase result for a γ1 path, i.e. ∆θ ≈ 0,

106



5.4 Further numerical experiments

Figure 5.45: Searching C for discrete eigenvalues
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5.4 Further numerical experiments

Figure 5.46: Searching C for discrete eigenvalues, contour plot.

Figure 5.47: Results of varying L′. λ0 = 0.5, r = 1.0.
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5.4 Further numerical experiments

while for values of L′ near −L the result is roughly the same as for the original

γ3 paths, with L′ = −L. Situated about the value L′ = 0 is a region of gradual

transition from one regime to the other. Investigating the causes behind the shape

of this curve could eventually be a subject for further study beyond this thesis, with

obvious potential benefits for the computational speed of the Matlab codes used in

this chapter or any programs derived therefrom.

This concludes our series of phase computations for the test-case, and paves the

way for implementing phase computations in more complex, less-well understood

systems and investigating further the validity of the central conjecture.
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Chapter 6

Phase computations in a variety of

systems

In this chapter we extend the concepts developed in the previous chapter by de-

scribing and presenting the results of a selection of numerical experiments involving

phase curves for a range of eigenvalue systems of the same form as the test-case.

The systems considered are:

• The Hocking-Stewartson pulse solution of the complex Ginzburg-Landau equa-

tion,

• The Rayleigh equation,

• The one-dimensional time-independent Schrödinger equation with a Morse po-

tential.

6.1 The Hocking-Stewartson pulse

In [5], Afendikov and Bridges consider the complex Ginzburg-Landau equation in

the scaled form

ρeiψAt = Axx − (1 + iω)2A+ (1 + iω)(2 + iω)|A|2A (6.1)

where A(x, t) is complex-valued and ρ > 0, ω and ψ are given real parameters; and

its Hocking-Stewartson pulse solution

A(x, t) = (cosh x)−1−iω (6.2)

They formulate the linear stability problem for such a solution in terms of the Evans

function. Their analysis results in an asymptotically constant 6-dimensional complex
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6.1 The Hocking-Stewartson pulse

linear system depending on the spectral parameter for the problem λ ∈ C. Using

the notation developed in this work, we write their system in our usual format as

ux = A(x, λ)u, x ∈ R, λ ∈ C, u(x, λ) ∈ C6 (6.3)

with

A(x, λ) =




0 0 1 −1 0 0
a32 0 0 0 0 0
a42 0 0 0 0 1
−a31 0 0 0 0 −1
−a41 0 0 0 0 0

0 −a41 −a31 −a42 a32 0




(6.4)

where the aij depend on x, λ, ρ, ω and ψ. Then

A∞(λ) = lim
x→±∞

A(x, λ) =




0 0 1 −1 0 0
−p(λ) 0 0 0 0 0
τ(λ) 0 0 0 0 1
−τ(λ) 0 0 0 0 −1
p(λ) 0 0 0 0 0

0 −p(λ) τ(λ) −τ(λ) −p(λ) 0




(6.5)

where p and τ now depend on just λ, ρ, ω and ψ, and not x. The eigenvector of

A∞(λ) corresponding to the eigenvalue of most negative real part, σ+(λ), is (for

σ+ 6= 0)

ξ+(λ) =




2σ+

−2p
(σ+)2

−(σ+)2

−2p
σ+((σ+)2 − 2τ)




(6.6)

The Matlab code written for the test-case was modified to fit this situation, resulting

in the programs

• integration_at_L_prime_HSpulse.m

• lambda_plane_eval_search_HSpulse.m.

As before, these calculate phases associated with γ3 paths (which, to reiterate, are

generated by integrating ux = Au from L to −L starting from eigenvectors ξ+(λ)).

6.1.1 Numerical results

We consider some of the cases discussed in [5], as defined by parameters ω, ρ, ψ:
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6.1 The Hocking-Stewartson pulse

Numerics for ω = 3, ρ = 1/
√

5, ψ = tan−1(2)

From [5] it is known that for these parameter values the system has three discrete

eigenvalues, all of which are real: a double root at λ = 0 and two simple roots at

λ ≈ −7 and λ ≈ +15. Figure 6.1 shows the result of using

Figure 6.1: Phase change results for a lattice of λ-loops of radius r = 0.6, for ω = 3,

ρ = 1/
√

5, ψ = tan−1(2)

lambda_plane_eval_search_HSpulse.m to evaluate the phases associated with a

large number of γ3 paths generated by circles of radius r = 0.6 in λ-space, with
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6.1 The Hocking-Stewartson pulse

L = 10 = −L′ as before. Figure 6.2 shows the corresponding contour plot. These

Figure 6.2: Contour plot corresponding to Figure 6.1

show clearly that the phase change associated with a γ3 path generated by a given

λ-loop corresponds precisely to the number of discrete eigenvalues within that loop.

Note that here the double root gives a phase value of two, while the other two roots

give a phase value of one and all other points give phase values of zero. The width

of the peaks is due to the fact that the same discrete eigenvalue may be contained in

more than one λ-loop (two in this case); the results produced thus depend not only

on the radii of the λ-loops but also on the spacing of the lattice points which are

the centres of the λ-loops. Despite these fine-tuning issues, the result here is clear.

We then focused on just the root at λ ≈ −7 by decreasing the mesh size and the

radii of the λ-loops and centering the mesh around the point λ ≈ −6.6357, which

is the eigenvalue location calculated using the Evans function in [5]. Figure 6.3

shows the results and Figure 6.4 shows the corresponding contour plot. The lattice

spacing here is 0.01 and the radius used is r = 0.006. The striking new feature of

these results is that the phase change values are no longer approximately integers
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6.1 The Hocking-Stewartson pulse

Figure 6.3: Phase change results for a lattice of λ-loops of radius r = 0.006, centred

about λ ≈ −6.66, for ω = 3, ρ = 1/
√

5, ψ = tan−1(2)
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6.1 The Hocking-Stewartson pulse

Figure 6.4: Contour plot corresponding to Figure 6.3

115



6.1 The Hocking-Stewartson pulse

as in the previous cases, but occupy a range of values between approximately zero

and 0.45. This suggests that the radius of the λ-loops may affect the phase change

results after all, which was not seen previously because r was never chosen to be

this small. Continuing in this vein, Figures 6.5 and 6.6 show the result of using

an even finer mesh and decreasing the λ-loop radius still further, while keeping the

lattice centred around the peak in phase values. The mesh spacing is now 0.0005

and the radius is r = 0.0003. Note that although the absolute phase values have

decreased dramatically and are now of order 10−3, their relative values are consistent

with previous plots, and we retain the distinct peak at the same location, which

moreover at this scale appears smooth. It should be noted that these numerical

results clearly place the peak phase change at the value λ ≈ −6.641 as opposed to

the value λ ≈ −6.6357 calculated in [5]; the discrepancy between these two values

would be a matter for further research.

Since the dependence of the phase results on the λ-loop radius r, for small r,

has been shown to be a matter of great importance in the numerics, we illustrate

this relationship in Figure 6.7. The left plot shows several λ-paths encircling the

double eigenvalue at λ = 0, with radii ranging from r = 0.001 up to r = 1, while

the right plot shows the corresponding numerical phase results. These plots show

that the phase changes range from approximately zero to approximately two, and

that the integer phase result of the central conjecture holds only for r > 0.01 in this

case. The cause of this deterioration in validity of the result is presently unclear.

However, the preservation of the relative structure of the phase values for small r is

an interesting result, as this may enable the location of the peak to be determined

to as fine a scale as required.

Numerics for ω = 2 +
√

5, ρ = 1/
√

5, ψ = tan−1(2)

From [5] it is known that for these parameter values the system has a discrete

eigenvalue at λ = 0, which is a triple root of the Evans function. Thus we might

expect to see a peak phase change of approximately 3 located at the origin in λ-

space, and zero elsewhere. However, the numerical results do not follow this pattern,

as shown in Figures 6.8 and 6.9, for which r = 0.2. Figures 6.10 and 6.11 have

r = 0.05 and show a close-up of the region around the origin, where the triple root

is believed to exist. Instead of the expected single peak of height 3, the numerics

yield three separate peaks, each of phase change 1, one at the origin and one either

side of this on the imaginary axis, at approximately ±0.7i.
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6.1 The Hocking-Stewartson pulse

Figure 6.5: Phase change results for a lattice of λ-loops of radius r = 0.0003, centred

about λ ≈ −6.641, for ω = 3, ρ = 1/
√

5, ψ = tan−1(2)
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6.1 The Hocking-Stewartson pulse

Figure 6.6: Contour plot corresponding to Figure 6.5
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6.1 The Hocking-Stewartson pulse

Figure 6.7: λ-paths of various radii encircling the double eigenvalue at the origin

(left), and their corresponding phase results (right)

Numerics for ω = 0, ρ = 1, ψ = π/2

For these parameter values equation (6.1) reduces to the nonlinear Schrödinger equa-

tion, as stated in [5]. The analytical results for the λ = 0 case indicate that there is

a quadruple eigenvalue at the origin [39], which for small enough perturbations of

ω and ψ splits in to a double eigenvalue at the origin plus two simple eigenvalues,

λ1 < 0 and λ2 > 0 [40]. However, the phase numerics we present here are not

consistent with this pattern of behaviour. For a large enough λ-loop radius, say

r = 0.3, we do indeed see a phase change value of approximately 4 at the origin

and zero elsewhere, as shown in Figures 6.12 and 6.13. However, this is simply an

artifact of the mesh size, for when a finer mesh is used with a smaller loop radius,

say r = 0.02, the numerics show four distinct peaks, each with a phase change of 1,

located symmetrically about the origin at ±0.1 ± 0.1i, and zero elsewhere. This is

shown in Figures 6.14 and 6.15.

Numerics for ω = 0.03, ρ = 1, ψ = π/2

Following on from the previous case, these parameter values represent a small per-

turbation of the constant ω, as described above. Again however, the phase results
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6.1 The Hocking-Stewartson pulse

Figure 6.8: Phase change results for a lattice of λ-loops of radius r = 0.2, centred

about λ ≈ 0, for ω = 2 +
√

5, ρ = 1/
√

5, ψ = tan−1(2)
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6.1 The Hocking-Stewartson pulse

Figure 6.9: Contour plot corresponding to Figure 6.8
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6.1 The Hocking-Stewartson pulse

Figure 6.10: Phase change results for a lattice of λ-loops of radius r = 0.05, centred

about λ ≈ 0, for ω = 2 +
√

5, ρ = 1/
√

5, ψ = tan−1(2)
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6.1 The Hocking-Stewartson pulse

Figure 6.11: Contour plot corresponding to Figure 6.10
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6.1 The Hocking-Stewartson pulse

Figure 6.12: Phase change results for a lattice of λ-loops of radius r = 0.3, centred

about λ ≈ 0, for ω = 0, ρ = 1, ψ = π/2
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6.1 The Hocking-Stewartson pulse

Figure 6.13: Contour plot corresponding to Figure 6.12
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6.1 The Hocking-Stewartson pulse

Figure 6.14: Phase change results for a lattice of λ-loops of radius r = 0.02, centred

about λ ≈ 0, for ω = 0, ρ = 1, ψ = π/2
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6.1 The Hocking-Stewartson pulse

Figure 6.15: Contour plot corresponding to Figure 6.14
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6.1 The Hocking-Stewartson pulse

here do not display the same behaviour as described in [5]; instead of either the

splitting described above or the triple root identified in [5] by the Evans function

method, we see the two peaks in the left half-plane persist in a similar state to the

ω = 0 case, while in the right half-plane we now see a peak of height 2 on the real

axis, as if the two separate right-half-plane peaks of the ω = 0 case have coalesced.

Figures 6.16 and 6.17 show these results, while Figure 6.18 shows a close-up contour

plot of the two left-half-plane peaks. Figures 6.19, 6.20 and 6.21 show contour

plots for ω = 0.028, 0.029 and 0.0295, illustrating what happens in between the

two ω = 0 and ω = 0.03 cases just presented. These results confirm that the two

right-half-plane peaks do in fact coalesce to form a double-height peak as ω increases

from zero. However, a more detailed investigation indicates that the value of ω at

which the coalescence occurs is a little higher than 0.03, nearer to 0.0309, above

which the two peaks split again, but now remain on the real axis. This is shown in

Figures 6.22 and 6.23.

Numerics for ω = 0.5, ρ = 0.5, ψ = 2

Since none of the published cases featured above, against which our numerics have

been compared, involve known discrete eigenvalues with nonzero complex part, we

present data for one final parameter set, in order to demonstrate some of the strange

phase change patterns our programs may generate far away from the real axis for

the HS pulse system. Figures 6.24-6.26 show the phase results for a narrow strip

around the imaginary axis. Note that the Re(λ) axis for the lattice of points ranges

from only -1.4 to +1.4, while the Im(λ) axis ranges from -15 to +15, which results

in the stretched appearance observed on the diagrams. There is clearly some very

strange behaviour exhibited in these results, unlike any seen previously. The two

contour plots show a double-height peak at the origin and strange wave-like patterns

symmetrical about the real axis, including two symmetrical single-height peaks. The

only exception to this symmetry is the peak in the top left corner of the plot, at

λ ≈ −1+13i. Indeed, the lower plot of Figure 6.24 confirms that there is one λ-path

which yields a phase change of approximately 2, two yielding approximately 1, and

one further path yielding a value just above 1. However, for this latter result we see

an erratic step change in the phase curve, indicating that the result is erroneous,

possibly due to being so close to the lattice edge.
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6.1 The Hocking-Stewartson pulse

Figure 6.16: Phase change results for a lattice of λ-loops of radius r = 0.03, centred

about λ ≈ 0, for ω = 0.03, ρ = 1, ψ = π/2
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6.1 The Hocking-Stewartson pulse

Figure 6.17: Contour plot corresponding to Figure 6.16
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6.1 The Hocking-Stewartson pulse

Figure 6.18: Contour plot close-up of the left half-plane of Figure 6.16, with r =

0.003
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6.1 The Hocking-Stewartson pulse

Figure 6.19: Contour plot of phase change results for a lattice of λ-loops of radius

r = 0.014, centred about λ ≈ 0, for ω = 0.028, ρ = 1, ψ = π/2
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6.1 The Hocking-Stewartson pulse

Figure 6.20: Contour plot of phase change results for a lattice of λ-loops of radius

r = 0.014, centred about λ ≈ 0, for ω = 0.029, ρ = 1, ψ = π/2
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6.1 The Hocking-Stewartson pulse

Figure 6.21: Contour plot of phase change results for a lattice of λ-loops of radius

r = 0.014, centred about λ ≈ 0, for ω = 0.0295, ρ = 1, ψ = π/2
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6.1 The Hocking-Stewartson pulse

Figure 6.22: Contour plot of phase change results for a lattice of λ-loops of radius

r = 0.014, centred about λ ≈ 0, for ω = 0.0309, ρ = 1, ψ = π/2
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6.1 The Hocking-Stewartson pulse

Figure 6.23: Contour plot of phase change results for a lattice of λ-loops of radius

r = 0.014, centred about λ ≈ 0, for ω = 0.032, ρ = 1, ψ = π/2
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6.1 The Hocking-Stewartson pulse

Figure 6.24: Phase change results for a lattice of λ-loops of radius r = 0.2, for

ω = 0.5, ρ = 0.5, ψ = 2
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6.1 The Hocking-Stewartson pulse

Figure 6.25: First contour plot corresponding to Figure 6.24
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6.1 The Hocking-Stewartson pulse

Figure 6.26: Second, slightly rotated, contour plot corresponding to Figure 6.24
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6.2 The Rayleigh Equation

6.1.2 Comments

Overall the numerical results are promising, however the lack of consistency with

previous results is of concern. On the one hand, many of the phase results are very

clear and show excellent correspondence with known eigenvalue location results, thus

providing good evidence to support the central conjecture. On the other hand, other

results are less clear, and despite showing very distinct patterns of phase peaks, for

example in Figures 6.12-6.23, do not correspond to results of previous investigations.

These discrepancies could either be due to the central conjecture being flawed (either

globally, or just in this case for some reason), or due to previous results being flawed.

Both of these options are plausible, the latter since for parameter values where

there are serious discrepancies, the literature on the matter takes care to highlight

the delicate nature of both the analytical and numerical results - indeed there is

a lack of solid numerical evidence for the results claimed. Having said that, it is

important to remember that the central conjecture here has no theoretical grounding

as yet, and that there is still at least one unresolved accuracy issue in the algorithm

used (the loop radius) and there may well be others. Even if there is some flaw in

either the numerics here or their interpretation, it is still hard to imagine that such

distinctive results do not have some precise mathematical meaning; resolving these

issues will require further work.

6.2 The Rayleigh Equation

The second example considered is the Rayleigh equation, which is a reduced version

of the Taylor-Goldstein equation, an ODE eigenvalue problem on C2 of great interest

in fluid mechanics and oceanography. The Rayleigh equation is

(U(z)− c)
(
d2φ

dz2
− k2φ

)
− U ′′(z)φ = 0 φ(z) ∈ C, z ∈ R (6.7)

where c ∈ C is an eigenvalue parameter, k is a real parameter, typically in the range

[−2, 2], and U(z) ∈ R is the mean velocity profile, given by

U(z) =
1

2
(1 + tanhz) (6.8)

Writing this in matrix format yields the equation

(
φ
φz

)

z

=

(
0 1

U ′′

U−c + k2 0

)(
φ
φz

)
(6.9)
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6.2 The Rayleigh Equation

then setting u =

(
u1(z)
u2(z)

)
=

(
φ
φz

)
casts the problem in our standard format

uz = A(z, c)u u(z) ∈ C2, z ∈ R, c ∈ C (6.10)

with

A(z, c) =

(
0 1

U ′′

U−c + k2 0

)
(6.11)

Regarding the asymptotic behaviour of the system we have

tanhz → ±1 as z → ±∞ (6.12)

⇒ U(z) =
1

2
(1 + tanhz) →

{
+1 as z → +∞
0 as z → −∞ (6.13)

and U ′′(z) = −tanhz sech2z → 0 as z → ±∞ (6.14)

so that

U ′′

U − c → 0 as z → +∞ except perhaps when c = 1 (6.15)

and
U ′′

U − c → 0 as z → −∞ except perhaps when c = 0 (6.16)

and therefore ∀c 6= 0, 1,

A∞(c) = lim
z→±∞

A(z, c) =

(
0 1
k2 0

)
, (6.17)

which has eigenvalue/vector pairs
{
k,

(
1
k

)}
and

{
−k,

(
1
−k

)}
. Thus for k > 0,

the eigenvalue of A∞(c) of most negative real part is −k, with corresponding eigen-

vector

(
1
−k

)
. Note that even though the system-at-infinity is actually indepen-

dent of the system eigenvalue parameter c here, we still write limz→±∞A(z, c) as

A∞(c) to maintain consistency with the framework set up previously. In fact there

are several aspects of this problem which differ radically from previous examples.

Of particular importance is the fact that as z varies, U(z) takes all values between

0 and 1, so that whenever c ∈ [0, 1] there will be some value of z at which the

denominator U(z)− c goes to zero, which may cause problems with any numerical

integration scheme implemented there.

We avoid some of the potential difficulties here by focusing on one special case:

it may be shown, by constructing an exact solution explicitly, that c = 1
2

is an

eigenvalue of the system when k = −1, 0, 1. The numerical results presented here

centre around the k = 1 case; we ensure that c stays away from 0 and 1, and keep in
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6.2 The Rayleigh Equation

mind that whenever a path in c-space (cf . λ-space in previous cases) crosses the real

axis between 0 and 1 the numerics may behave erratically due to the denominator

U − c going to zero. The Matlab code was modified appropriately, resulting in the

programs

• integration_at_L_prime_taylor_goldstein.m

• lambda_plane_eval_search_taylor_goldstein.m.

As usual these calculate phases associated with γ3 paths, which in this case are

generated by integrating ux = Au from L to −L starting from the eigenvector(
1
−k

)
.

6.2.1 Numerical results

Numerics for k = 1

All of the results presented for this system concern a lattice of points located between

the values 0 and 1 in c-space, approximately centred on c = 1
2
. The lattice spacing is

0.03 and the radius of the c-loops centred at the lattice nodes is r = 0.02 (cf . λ-loops

in previous cases). The standard values θ(0) = 0, L = 10 = −L′ and δ = 2π/10000

remain in use. The graphical output is of the same format as previously; Figures 6.27

and 6.28 show the plots for the case k = 1. The phase change is approximately

0 everywhere except at the location of the known eigenvalue c = 1
2
, at which its

value is approximately 1. The phase results along the real axis between 0 and 1 are

slightly less uniform than elsewhere in the lattice, as discussed, though this does not

detract from the overall picture.

Numerics for k = 0.8, 1.1

Figures 6.29, 6.30 and 6.31, 6.32 show the phase results for k = 0.8 and k = 1.1

respectively. Note that the height scale is much larger in the latter two plots, so

the peak values are in fact much lower than the former plots. For k = 0.8 we

see two clear, smooth phase results yielding two distinct peaks of height ≈ 1 either

side of the real axis at 0.5. The other phase results are all ≈ 0, although on the

lower plot of the first figure there are now many erratic step changes in the phase.

By observing the plotting process continuously it was confirmed that these and only

these data are generated by numerics in the vicinity of the real axis in c-space. This

is a pattern observed throughout all of the results here.
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6.2 The Rayleigh Equation

Figure 6.27: Phase change results for a lattice of c-loops of radius r = 0.02, centred

about c ≈ 0.5, for k = 1.0
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6.2 The Rayleigh Equation

Figure 6.28: Contour plot corresponding to Figure 6.27
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Figure 6.29: Phase change results for a lattice of c-loops of radius r = 0.02, centred

about c ≈ 0.5, for k = 0.8
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Figure 6.30: Contour plot corresponding to Figure 6.29
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6.2 The Rayleigh Equation

Figure 6.31: Phase change results for a lattice of c-loops of radius r = 0.02, centred

about c ≈ 0.5, for k = 1.1
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Figure 6.32: Contour plot corresponding to Figure 6.31
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Numerics for k ∈ [0.5, 1.5]

Using precisely the same lattice dimensions as above, Figures 6.33-6.43 show contour

plots for k = 0.5, 0.6, 0.7, 0.8, 0.9, 0.98, 1.0, 1.1, 1.2, 1.3, 1.4.

Figure 6.33: Contour plot for k = 0.5

6.2.2 Comments

The pattern is clear: as k increases from 0.5 to 1.0, the two peaks of height ≈ 1

coalesce, forming the single peak at c = 0.5 for k = 1. Then as k increases further

there are no such emphatic results, just a line of fluctuating data along the real axis

with a slight residual hump at c = 0.5, which is most likely just due to fluctuations

in error in the numerical procedure. Thus if the central conjecture is to be believed

and the distinct peaks in phase change do indeed correlate to the presence of a

discrete system eigenvalue, then these results indicate the existence of an imaginary

pair of system eigenvalues, of real part 0.5, for k ∈ [0.5, 1.0), which coalesce to the

known value for k = 1 then disappear for k ∈ (1, 1.4].
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6.2 The Rayleigh Equation

Figure 6.34: Contour plot for k = 0.6

Figure 6.35: Contour plot for k = 0.7
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6.2 The Rayleigh Equation

Figure 6.36: Contour plot for k = 0.8

Figure 6.37: Contour plot for k = 0.9
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6.2 The Rayleigh Equation

Figure 6.38: Contour plot for k = 0.98

Figure 6.39: Contour plot for k = 1.0
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Figure 6.40: Contour plot for k = 1.1

Figure 6.41: Contour plot for k = 1.2
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6.2 The Rayleigh Equation

Figure 6.42: Contour plot for k = 1.3

Figure 6.43: Contour plot for k = 1.4
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6.3 The Schrödinger equation

The final example considered is the one-dimensional time-independent Schrödinger

equation with a Morse potential. In [41], Liu et al. investigate a shooting method

for solving the 1-D Schrödinger equation

−1

2

d2ψ

dx2
+ V (x)ψ = Eψ x ∈ R, ψ(x) ∈ C, V (x) ∈ R, E ∈ R (6.18)

where E < 0 is an energy eigenvalue of the system, V (x) is a given potential and

ψ(x) is the wave function. They convert the problem to the dynamical system
(
φ̇

ψ̇

)
=

(
0 −B(x,E)
1 0

)(
φ
ψ

)
(6.19)

B(x) = 2(E − V (x)) (6.20)

and take V (x) to be the Morse potential

V (x) = D[e−2ωx − 2e−ωx] (6.21)

with D = 12 (6.22)

ω = 0.204124 (6.23)

They consider boundary conditions
(
φ(a)
ψ(a)

)
=

(
1
0

)
,

(
φ(b)
ψ(b)

)
=

(
1
0

)
, a < b ∈ R (6.24)

and set a = −b = −13.5. The system has 24 discrete eigenvalues, all of which lie in

the interval (−12, 0), and are given by

En = −12 + (n+ 1/2)− 1

48
(n+ 1/2)2, n = 0, . . . , 23. (6.25)

Writing the system in our standard format gives

ux = A(x,E)u u(x) ∈ C2, x ∈ R, E ∈ C (6.26)

with

A(x,E) =

(
0 −B(x,E)
1 0

)
(6.27)

However, this system strays even further away from the format of the original prob-

lem, because now it is only asymptotically constant on one side:

B(x,E)→ 2E as x→ +∞ (6.28)

but B(x,E) does not converge as x→ −∞ (6.29)
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6.3 The Schrödinger equation

and

A+∞(E) = lim
x→+∞

A(x,E) =

(
0 −2E
1 0

)
, (6.30)

which has eigenvalue/vector pairs
{
±
√
−2E,

(
±
√
−2E
1

)}
. Now, since A(x,E)

does not converge as x→ −∞, it is not possible to find the eigenvectors correspond-

ing to both the stable and unstable manifolds of the system-at-infinity, as required

for the standard Evans function analysis. However, the technique developed here

only uses eigenvectors of the system at one of the boundaries, so the eigenvectors at

large x = b may be used as initial data for integrating the system down to x = a,

thus generating γ3 paths as usual. Note that selecting the integration range [a, b] is

a slightly more delicate matter than previously because when V (x) is small at one

end of the range, it is large at the other. We take a = −b = −13.5. Again, the

Matlab code was modified to fit the example at hand, yielding programs

• integration_at_L_prime_schrodinger.m

• lambda_plane_eval_search_schrodinger.m.

6.3.1 Numerical results

Figures 6.44 and 6.45 show the results of the numerical phase computations in

the usual format, using a lattice of points with spacing 0.2 and E-loops of radius

r = 0.14. The 24 eigenvalues given in (6.25) are also shown beneath the lattice

for easy comparison of their location with the phase results. Figure 6.46 shows a

close-up of the lattice near to the origin where the eigenvalues are closer together.

6.3.2 Comments

Accounting for the obvious issues regarding lattice spacing and overlapping E-loops,

which are particularly evident due to the eigenvalue spacing here, the phase change

peaks show excellent agreement with the known eigenvalue locations.

Remark 6.3.1. Motivated by the choice of boundary conditions (6.24) used in [41],

the numerical algorithm was modified slightly to use as starting vectors for the γ2

paths not the eigenvectors of the system-at-infinity, (6.30), but instead just the con-

stant vector

(
1

0

)
. Exactly the same distinctive results were observed, with the

phase change reflecting precisely the number of eigenvalues contained within the

corresponding E-loop. This introduces the possibility that the use of the eigenvectors
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6.3 The Schrödinger equation

Figure 6.44: Phase change results for a lattice of E-loops of radius r = 0.14. Note

that in addition to the usual elements on the top plot, the 24 exact eigenvalue

locations are shown as points beneath the lattice.
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Figure 6.45: Contour plot corresponding to Figure 6.44
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6.3 The Schrödinger equation

Figure 6.46: Phase change results for a lattice of E-loops of radius r = 0.14. Note

that in addition to the usual elements on the top plot, the 14 exact eigenvalue

locations within this region are shown as points beneath the lattice.
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6.3 The Schrödinger equation

of the system-at-infinity as initial data when integrating the system may in fact be an

entirely redundant element of the proposed numerical scheme after all. Clarification

of this aspect of the problem would require extensive further testing.

The numerical results presented in this chapter show the application of the phase

theory to computations in several current research scenarios, demonstrating clearly

that the phase is an important concept in dynamical systems, even if it is not yet

understood well enough. The big question which has been raised here is: if there is

such good correlation between phase changes and discrete eigenvalue locations for

so many of the cases, where does the flaw lie in the cases where agreement is less

good?
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Chapter 7

Concluding remarks and
discussion

7.1 General discussion

This thesis identifies and makes precise the process of choosing to view paths on

Cn in terms of a much-overlooked geometrical framework. This perspective has

not been investigated in this context or depth before. The work shows it to be a

framework within which many kinds of dynamical problems on Cn may be addressed,

in particular differential eigenvalue problems on unbounded intervals, and goes some

way to understanding the role of the complex geometric structures now seen to be

present in even the simplest of ODE systems.

The work documents the logical flow of concepts identified which leads to the

important realization that when viewed in terms of the hierarchy of spaces here,

every path on Cn \ {0} has connected with it an underlying “ticking-clock”-like

phase quantity, geometrical in origin, the full consequences of which are not yet

fully understood, though clearly important and potentially immensely useful. Our

description of this phase quantity is mathematically precise, though its interpreta-

tion is still incomplete. Progress here would require further understanding of the

mathematical role of the phase - the effects of which we have been able to observe in

several numerical experiments, but the full implications of which are still unresolved.

The work provides a balanced report of the developments made, combining as it

does a mixture of theoretical review and progress with computational experiments

and results based thereon. It is hoped that this approach creates a rounded picture

of the research, in order to act simultaneously as effective motivation and foundation

for further research on the topic.
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7.2 Summary of achievements

The original contributions to the mathematical literature detailed in this work are

quite varied and are summarized here according to three categories:

• Interpretation of known theory. We have produced a concise review of the

concepts concerning fibre bundles required in order to follow the subsequent

material in the thesis. The original diagrams on which this review is based

render the thesis as a whole much more accessible, which is a key consider-

ation for a work such as this which crosses traditional subject boundaries in

mathematics. A numerical perspective on bundle elements is emphasized.

• Theoretical developments. We have explored in detail the much-overlooked

Hopf bundle structure U(1)→ S2n−1 → CP n−1 intrinsic to every copy of Cn,

and identified the significance of local coordinates, connection forms, parallel

transport and the resulting phase quantity in this context. In doing so we

have elucidated the mathematical foundation underlying the apparently sim-

ple process of integrating a connection 1-form along a path in the Hopf bundle.

We have produced a conjecture concerning the meaning of the phase; i.e. that

in linear systems of the specific form considered, the Hopf bundle phase as-

sociated with a closed path generated in the proposed manner by a closed

path in parameter space reflects precisely the number of discrete eigenvalues

of the linear system contained within that path. We have explored and refined

the quaternionic matrix description of the S1 → S3 → S2 Hopf bundle, pro-

viding explicit new descriptions of the horizontal and vertical subspaces and

their relationships to the group action; we have proved that the natural con-

nection is the only connection for this bundle. We have derived the parallel

transport/phase equation for this reduced quaternionic matrix case, and in

doing so have provided yet another new, intuitive perspective on the geome-

try of the Hopf bundle, demonstrating explicitly how the horizontal/vertical

splitting relates to linear ODE dynamics within the bundle.

• Computational applications. We have developed a number of algorithms for

calculating the Hopf bundle phase associated with specific types of paths in

Cn, both using the quaternionic matrix framework for the C2 case, and the

general framework for the Cn case. We have conducted and reported on a wide

range of numerical experiments involving calculating phases associated with

the various paths, for a range of systems. We have thus identified many of the
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factors affecting the outcomes of the computations, including: the type of the

path in Cn (i.e. γ1, γ2, γ3), and for γ3 paths, the properties of the generating

path in λ-space, such as loop radius, number of discrete eigenvalues contained

therein, crossings of continuous spectrum and asymptotic limit approximation

values L,L′. The results have provided a great deal of supporting evidence

for the central conjecture, although there is also a high level of complexity in

the results which still requires deciphering. Again this would require further

understanding of the mathematical role of the phase. We have applied the

numerical schemes to several live research topics, and produced data indicative

of important new results concerning discrete eigenvalue locations.

7.3 Future work directions

Due to the fundamental nature of both the geometrical framework investigated and

the numerical results discovered, there are many possible directions for continuing

this research. One of the main issues that needs addressing is the lack of knowledge

of the mathematical properties of the phase. We have identified this quantity and

its origins precisely, and have been able to observe some of its behaviour numer-

ically, however we have only been able to conjecture the most interesting mathe-

matical property suggested by the numerics, concerning the spectral properties of

1-parameter-dependent linear systems. Mathematical clarification of the situation

is an open problem; it also appears to be quite a difficult problem. The connections

between the work here and previous bundle-related results of Alexander, Gardner

and Jones [36] need to be identified.

In addition we can continue to investigate phase changes in differential eigenvalue

problems experimentally. The following specific issues are open to investigation:

• What is the role of the λ-loop radius r used in generating γ3 paths? Is the pat-

tern shown in Figure 6.7 found to apply in different systems, and if so does it

have the same characteristics, i.e. is r ≈ 0.02 always the smallest radius yield-

ing the approximately-integer phase change result? Can we characterize the

pattern more precisely through further numerical tests, and what ultimately

is the cause of this behaviour?

• What happens if the closed loops in λ-space used to generate γ3 paths are

not circular? How does this relate to the previous point, i.e. could we instead
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characterize phase change results in terms of the area contained within λ-

loops? How does a given phase change result depend upon the proximity of

the underlying λ-loop to a discrete eigenvalue or continuous spectrum?

• What happens if, as considered in Remark 6.3.1, we do not restrict ourselves to

using eigenvectors of the asymptotic system as initial conditions for integrating

the linear system and thus generating γ2 paths - and hence γ3 paths? This

could be a very important issue because it may affect some of the assumptions

made in this work, and may require the central conjecture to be modified

slightly. More importantly however, it may also vastly increase the range of

systems to which our results apply, by no longer requiring the system to satisfy

the specific asymptotic conditions considered here. We have seen indications

that this will be the case - that the asymptotic-eigenvalue initial condition is

in fact redundant, because the phase change results are the same even in its

absence - but this area does require further investigation.

• What is the effect on numerics of using alternative connections?

• Running the programs on faster computer systems would be of great bene-

fit, since the larger simulations reported here have typically taken up to ten

hours to complete on a standard 2.40Ghz machine. This would allow far more

detailed testing of systems.

• Given a system of the standard format considered in this report (ux = A(x, λ)u

with appropriate asymptotic conditions), is it of relevance whether it is a

system induced on an exterior algebra space by some other more basic system,

or not? We have not mentioned this issue at all so far, but it may be worth

considering because much of the literature on the Evans function (to which this

work is closely related) concerns the process of inducing systems on exterior

algebra spaces in order to construct a suitable geometric framework in which

the Evans function method will operate successfully. For example the HS-

pulse system of Section 6.1 is in fact an induced system on
∧2(C4) (derived

in [5]), whereas the Taylor-Goldstein system of Section 6.2 is not. Yet they are

both amenable to our analysis because they are of our standard format, and

they both yield numerical results following patterns in support of the central

conjecture.
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• As a final thought, it may be worth considering how to deconstruct Cn in an

analogous manner using bundle structures others than the U(1)-Hopf bundle

chosen here. For example what about the quaternion-based SU(2)-Hopf bun-

dle S3 → S7 → S4, or indeed other generalized Hopf fibrations? Could this

lead to a more complicated multi-dimensional phase quantity? Or perhaps we

can extend the analysis to include the general case principal U(k)-bundle of

the Stiefel manifold over the Grassmannian, U(k) → StC(k, n) → GrC(k, n),

of which our work is just the simplest, n = 1 case.

It may well transpire that the most realistic method for continuing to investi-

gate the topics reported in this thesis will be to carry out a whole host of detailed

numerical experiments such as those listed above, in order to gradually build up a

reliable picture of the numerical properties of the Hopf phase quantity. It is envis-

aged that this approach could eventually lead to a level of insight sufficient to begin

forming the concrete mathematical characterization of the phase quantity required

for any scientifically rigorous statements to be made and - hopefully - applied to

real physical systems in future.
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