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1 Introduction

Dillingham [8] gave the first derivation of the shallow water equations (SWEs) relative
to a moving frame of reference in two dimensions (2D). Independent derivations were later
given in 1994 by Huang & Hsiung [6, 7] (the HH SWEs) and in 1996 by Armenio & La
Rocca [5] (the ALR SWES). The 2D derivation of [6, 7] is reviewed in the technical report
[3].

In this report we review the ALR derivation and identify their key assumptions. The
reason for this report is fourfold. The ALR derivation has similarities with, but also differ-
ences from, the derivations of Dillingham and Huang & Hsiung. Secondly, their form of
the SWEs has the novel property that it has a variational principle in the Eulerian setting.
Thirdly, the ALR derivation is more precise than either [8] and [7]. The fourth reason is to
compare with the new surface SWEs proposed in [1].

The notation in this report follows [1].

2 ALR SWEs in two-dimensions

A key part of the ALR derivation is the use of the mean velocity

u =
1

h

∫ h

0

u(x, y, t) dy . (2.1)

By using the mean velocity the mass equation is exact

ht + (hu)x = 0 . (2.2)

The reduction of the momentum equations proceeds as follows. The translation accel-
erations q̈ are dropped since they are neglected by ALR. (They do not however affect the
derivation of ALR and could be added.) The starting point of the ALR derivation is the
momentum equations in the form

Du

Dt
+

1

ρ

∂p

∂x
= −g sin θ + 2Ωv + Ω̇(y + d2) + Ω2(x + d1) ,

Dv

Dt
+

1

ρ

∂p

∂y
= −g cos θ − 2Ωu− Ω̇(x + d1) + Ω2(y + d2) ,

(2.3)
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The first assumption is to neglect the vertical acceleration

Dv

Dt
≈ 0 . (ALR-1)

The vertical momentum equation then reduces to

1

ρ

∂p

∂y
= −g cos θ − 2Ωu− Ω̇(x + d1) + Ω2(y + d2) ,

Integrate this equation over the entire depth

1

ρ
p(x, y, t)

∣∣∣∣h − 1

ρ
p(x, 0, t) = −gh cos θ − 2Ω

∫ h

0

u dy − Ω̇(x + d1)h + 1
2
Ω2(h2 + 2hd2) .

Applying the dynamic free surface boundary condition, and neglecting surface tension, gives
an expression for the pressure field at y = 0

1

ρ
p(x, 0, t) = gh cos θ + 2Ωhu + Ω̇(x + d1)h− 1

2
Ω2(h2 + 2hd2) .

Now consider the x−momentum equation in (2.3). To simplify this equation two as-
sumptions are invoked

2Ωv ≈ 0 , (ALR-2)

and
1

ρ

∂p

∂x
in the x−momentum equation is evaluated at y = 0 . (ALR-3)

With these assumptions the x−momentum equation simplifies to

Du

Dt
+

1

ρ

∂p

∂x

∣∣∣∣
y=0

= −g sin θ + Ω̇(y + d2) + Ω2(x + d1) ,

with
1

ρ

∂p

∂x

∣∣∣∣
y=0

= ghx cos θ + 2Ω(hu)x + Ω̇h + Ω̇(x + d1)hx − Ω2(h + d2)hx .

However, the system is still not closed. One additional assumption is required

Du

Dt
≈ ut + u ux . (ALR-4)

With this hypothesis, the x−momentum equation becomes

ut + u ux + a(x, t)ALRhx = b(x, t; y)ALR , (2.4)

with coefficients

a(x, t)ALR = g cos θ + Ω̇(x + d1)− Ω2(h + d2) + 2Ωu ,

b(x, t; y)ALR = −g sin θ − 2Ωhux + Ω̇(y − h + d2) + Ω2(x + d1) .
(2.5)

The first two assumptions (ALR-1)-(ALR-2) are analogues of the ones used in the
derivation of the surface equations in [1]. It is difficult to quantify the error in assumption
(ALR-3). The error in Assumption (ALR-4) can be clarified however, since

1

h

∫ h

0

Du

Dt
dy − ut − u ux =

1

h

∂

∂x

(∫ h

0

u2 dy − hu2

)
.
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Hence the error is small if the the right-hand side of this expression is small. A sufficient
condition for neglect is when the depth-averaged velocity squared is close to the square of
the depth-averaged velocity.

With appropriate change of notation, equations (2.4) with (2.5) correspond to equation
(18) in [5]. Note that the vehicle acceleration q̈ is absent in [5] but it can be easily added.
The pair of equations ht + (hu)x = 0 and (2.4) are called the ALR SWEs.

With q̈ neglected, and assuming U ≈ u , the ALR coefficients relative to a and b in [1]
are

a(x, t)ALR = a(x, t) + 2Ωu ,

b(x, t; y)ALR = b(x, t) + Ω̇(y − 2h)− 2Ω(ht + hux) .

The comparison can be simplified by using the mass equation to eliminate the second term
in a(x, t)ALR and the third term in b(x, t; y)ALR . After this change the two systems are
very close (assuming U ≈ u). The coefficient b(x, t; y)ALR stil depends on y . There are a
number of choices for y : y = 0, y = 1

2
h (obtained by averaging), y = h and y = 2h . The

most natural choice is y = 1
2
h which is obtained by averaging. Another interesting choice

is y = h . In this case the equations have an interesting variational principle (see §3 below).
However, the conservation form is lost unless y = 2h which is not physically reasonable.
Henceforth in discussing the ALR SWEs we will use the choice y = h .

It is remarkable that the ALR SWEs are very close to the surface equations, when U
and u are identified, especially since the surface equations have only two assumptions, and
the ALR SWEs have four assumptions. Although the two sets of SWEs are similar, there
are still two principal advantages to using the surface SWEs: first it is very clear what the
assumptions are in the derivation, and secondly, the derivation extends in a straightforward
way to the case of three-dimensional rotating shallow-water flow, whereas deriving the SWEs
in 3D with the average velocity is very difficult and not always unambiguous [2].

3 Variational principle: Eulerian form of SWEs

The ALR SWEs have a variational formulation. Take the ALR SWEs in (2.4) and (2.5) with
y = h , and unit fluid density.

Introduce the Lagrangian functional

L (h, u, φ) =

∫ t2

t1

∫ L

0

[KE − PE + φ(ht + (hu)x)] dx dt ,

with
KE = 1

2
hu2 − Ωhu(h + d2) + 1

2
Ω2

(
1
3
h3 + d2h

2 + d2
2h

)
+1

2
hΩ2(x + d1)

2 − 1
2
Ω̇(x + d1)(h + d2)

2

PE = g
(

1
2
h2 + d2h

)
cos θ + gh(x + d1) sin θ .

Note that mass conservation is introduced as a constraint, with Lagrange multiplier φ ,
which turns out to be a generalized velocity potential. The first variation of this Lagrangian
functional with respect to h , u and φ recovers the ALR shallow-water equations.
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To confirm, take variations

∂L

∂φ
= 0 ⇒ ht + (hu)x = 0

∂L

∂u
= 0 ⇒ φx = u− Ω(h + d2) ,

and ∂L
∂h

= 0 gives

φt + uφx = 1
2
u2 − Ωu(h + d2)− Ωhu + 1

2
Ω2(h + d2)

2

+1
2
Ω2(x + d1)

2 − Ω̇(x + d1)(h + d2)

−g(h + d2) cos θ − g(x + d1) sin θ .

Substituting in for φx and simplifying

φt + 1
2
u2 = −Ωhu + 1

2
Ω2(h + d2)

2

+1
2
Ω2(x + d1)

2 − Ω̇(x + d1)(h + d2)

−g(h + d2) cos θ − g(x + d1) sin θ .

This is a form of Bernoulli’s equation for the shallow-water equations in a rotating vessel.
Differentiate with respect to x and substitute again for φx

ut − Ω̇(h + d2)− Ωht + uux = Ωht + Ω2(h + d2)hx

+Ω2(x + d1)− Ω̇(h + d2)− Ω̇(x + d1)hx

−g cos θ hx − g sin θ .

or

ut + uux + (g cos θ − Ω2(h + d2) + Ω̇(x + d1))hx = 2Ωht + Ω2(x + d1)− g sin θ ,

recovering the momentum equation in the ALR form of the SWEs.
In this derivation, the rotation motion is assumed to be prescribed. θ can also be

considered an unknown, and then the variation with respect to θ , δL
δθ

= 0, gives an equation
for the vessel motion. For the complete equation, including the motion of the vessel, the
kinetic and potential energy of the vessel need also to be included. The coupled problem is
studied in [4].
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