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New shallow-water equations, for sloshing in three dimensions (two horizontal and one vertical) in a
vessel which is undergoing rigid-body motion in 3−space, are derived. The rigid-body motion of the
vessel (roll-pitch-yaw and/or surge-sway-heave) is modelled exactly and the only approximations are
in the fluid motion. The flow is assumed to be inviscid but vortical, with approximations on the vertical
velocity and acceleration at the surface. These equations improve previous shallow water models. The
model also extends the essence of the Penney-Price-Taylor theory for the highest standing wave. The
surface shallow water equations are simulated using an split-step implicit alternating direction finite-
difference scheme. Numerical experiments are reported, including comparisons with existing results in
the literature, and simulations with vessels undergoing full three-dimensional rotations.

1. Introduction
Shallow-water equations (SWEs) for a three-dimensional (3D) inviscid but vortical fluid in a vessel

undergoing an arbitrary prescribed rigid-body motion in 3D are derived. The rigid body motion is
represented exactly and only two assumptions are imposed on the velocity and acceleration at the free
surface to close the SWEs.

While there has been a vast amount of research into two-dimensional sloshing, the research into 3D
sloshing is still very much in development. A review of much of the research to date is presented in
Ibrahim (2005). The predominant theoretical approaches for studying 3D sloshing are (a) asymptotics
and weakly nonlinear theories, (b) multi-modal expansions which reduce the governing equations to a
set of ordinary differential equations; (c) reduction to model partial differential equations such as the
shallow water equations; and (d) direct numerical simulation of the full 3D problem.

If 3D numerical simulations were faster, the latter approach would be very appealing. There has been
much progress in the numerical simulation of 3D sloshing using Navier-Stokes based methods (MAC,
SURF, VOF, RANSE), boundary-element methods and finite-element methods for 3D potential flow
(some examples are Lee et al. 2007; Kim 2001; Liu & Lin 2008; Buchner 2002; Kleefsman et al. 2005;
Gerrits 2001; aus der Wiesche 2003; Chen et al. 2009; Cariou & Casella 1999; Chen et al. 2000; Wu
et al. 1998). While the results of these simulations are impressive, the difficulty is that CPU times
are measured in hours rather than seconds or minutes. An example is the VOF simulations of Liu &
Lin (2008), where 3D sloshing in a vessel with rectangular base is forced harmonically. To simulate
50 seconds of real time (about 20 periods of harmonic forcing) took 265 hours of CPU time. It is very
difficult to do parametric studies or long time simulations with this amount of CPU time. Hence any
reduction in dimension is appealing.

On the other hand one can make some progress in the understanding of sloshing in 3D using
analytical methods, asymptotics (perturbation theory, multi-scale expansions) and modal expansions.
In 2D shallow water sloshing the predominant types of solution are the standing wave and travelling
hydraulic jump. But in 3D shallow water sloshing the range of basic solutions is much larger. One still
has the 2D solutions, but there can be mixed modes, swirling modes, multi-mode cnoidal standing
waves and multi-dimensional hydraulic jumps and analytical methods are very effective for identifying
parameter regimes for these basic solutions (e.g. Faltinsen et al. 2003, 2006a; Faltinsen & Timokha
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2003; Bridges 1987). And, there is a vast literature on asymptotic methods for the special case of
parametrically-forced sloshing in rectangular containers (Faraday experiment) (e.g. Miles & Henderson
1990, and its citation trail). Multi-modal expansions take analytic methods to higher order. When
the fluid domain is finite in extent there is a countable basis of eigenfunctions for the basin shape,
and one approach that has been extensively used is to expand the nonlinear equations in terms of
these (or other) basis functions with time-dependent coefficients, leading to a large system of ordinary
differential equations. Examples of this approach are Faltinsen & Timokha (2003); Faltinsen et al.
(2003, 2006a); La Rocca et al. (1997, 2000) and (Part II of Ibrahim 2005). The advantage of modal
approximation is that the problem is reduced to a system of ODEs which is much quicker to simulate
numerically.

In between direct 3D simulations and analytical methods is a third approach: to derive reduced PDE
models. This approach is particularly useful for the study of shallow water sloshing. The study of 3D
shallow-water sloshing is motivated by a number of applications such as: sloshing on the deck of fishing
vessels (Caglayan & Storch 1982; Adee & Caglayan 1982) and offshore suppy vessels (Falzarano et al.
2002), sloshing in wing fuel tanks of aircraft (Disimile et al. 2009), green-water effects (Dillingham &
Falzarano 1986; Zhou et al. 1999; Buchner 2002; Kleefsman et al. 2005), sloshing in a swimming pool
on deck (Ruponen et al. 2009), sloshing in fish tanks onboard fishing vessels (Lee et al. 2005), and
sloshing in automobile fuel tanks (aus der Wiesche 2003).

About the same time, Dillingham & Falzarano (1986) and Pantazopoulos (1987) (see also Panta-
zopoulos & Adee (1987) and Pantazopoulos (1988)) derived shallow water equations for 3D sloshing
with the vessel motion prescribed. It is this approach that is the starting point for the current paper.
These SWEs, hereafter called the DFP SWEs, will be recorded and analyzed in §9. In followup work
Huang (1995) (see also Huang & Hsiung (1996) and Huang & Hsiung (1997)) gave an alternative
derivation of rotating SWEs for sloshing resulting in slightly different equations from the DFP SWEs.
The latter system will be called the HH SWEs. A discussion of the HH SWEs is also given in §9.

The DFP SWEs use a very simple form for the vessel motion, and have unecessarily restrictive
assumptions in the derivation. The derivation of the HH SWEs is more precise but still has some
restrictive assumptions. These assumptions are outlined in §9 and in more detail in the technical
reports of Alemi Ardakani & Bridges (2009d ,e).

In this paper a new derivation of SWEs in 3D is given which leads to exact SWEs for the horizontal
velocity field at the free surface of the form

Ut + UUx + V Uy +
(
a11 + Dw

Dt

∣∣h)hx + a12hy = b1 + σ∂xdiv(κ)

Vt + UVx + V Vy +
(
a22 + Dw

Dt

∣∣h)hy + a21hx = b2 + σ∂ydiv(κ) .
(1.1)

These equations are relative to a frame of reference moving with the vessel with coordinates (x, y, z)
and z vertical. The terms a11, a12, a21, a22, b1, b2 encode the moving frame, κ is a curvature term
associated with surface tension, and Dw

Dt

∣∣h is the Lagrangian vertical acceleration at the free surface.
The fluid occupies a rectangular region with a single-valued free surface,

0 6 z 6 h(x, y, t) , 0 6 x 6 L1 , 0 6 y 6 L2 .

The free surface horizontal velocity field is

U(x, y, t) = u(x, y, z, t)
∣∣h := u(x, y, h(x, y, t), t) and V (x, y, t) = v(x, y, z, t)

∣∣h .
Couple the equations (1.1) with the exact mass conservation equation

ht + (hU)x + (hV )x = W + hUx + hVy , (1.2)

which is derived from the kinematic free surface boundary condition (see §2). W = w
∣∣h is the vertical

velocity at the free surface.
By assuming that Dw

Dt

∣∣h ≈ 0 and W + hUx + hVy ≈ 0 the equations (1.1)-(1.2) are a closed set of
SWEs which retain the vessel motion exactly. It is this closed set of SWEs that is the starting point
for the analysis and numerics in this paper.
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One of the advantages of the SWEs is that vorticity is retained. This is in contrast to almost all
analytical research into 3D sloshing which uses the assumption of irrotationality. Vorticity can be
input through the initial conditions, but a new mechanism comes into play in shallow water sloshing:
the creation of vorticity though discontinuities in hydraulic jumps (e.g. Peregrine 1998, 1999). In
coastal hydraulics Peregrine (1998) has shown how steady hydraulic jumps generate vorticity. In the
case of shallow water sloshing there is a dynamic mechanism due to the time-dependent nature of
the hydraulic jumps, and this phenomena is witnessed in some of the numerical simulations reported
herein.

In special cases the surface SWEs (1.1)-(1.2) have a form of potential vorticity (PV) conservation.
For example when the vessel is undergoing pure yaw motion, then a form of PV is conserved. This
PV is different from that appearing in geophysical fluid dynamics. In geophysical fluid dynamics the
rotation (rotation of the earth) is treated as a constant, whereas here the rotation is time dependent.
On the other hand, Barnes et al. (1983) have shown that the earth does indeed wobble and so the
idea of time-dependent yaw motion has some relation to geophysical fluid dynamics.

The vessel is modelled as a rigid body, and the position of a rigid body in 3−space is completely
determined by specifying (q(t),Q(t)) where q(t) is a vector in R3 giving the horizontal and vertical
translation of the body relative to some fixed reference frame, and Q is a proper 3×3 rotation matrix
(Q is orthogonal and det(Q) = 1).

Specifying translations is straightfoward, but specifying rotations requires a little more care. Sur-
prisingly most previous work on forced sloshing uses pure translation, or the rotations are simplified
using a small angle approximation or restricted to planar rotations. The small angle approximation
is to take the angular velocity of the form Ω = (φ̇, θ̇, ψ̇) where φ, θ and ψ are roll, pitch and yaw
angles respectively (precise definition given in §8.2). Examples of forcing used in the literature are
Chen et al. (2009) (harmonic surge and sway motion, and harmonic roll motion); Wu et al. (1998)
(harmonic surge, sway and heave forcing); Chen et al. (2000) and Faltinsen et al. (2006a) (harmonic
surge forcing); aus der Wiesche (2003) (impulse excitation representative of automobile accelerations);
Faltinsen et al. (2006b) (roll-pitch forcing with a small angle approximation); Liu & Lin (2008) and
Wu & Chen (2009) include forcing in all 6 degrees of freedom, but the rotations use the small angle
approximation.

In this paper exact representations of the rotations are used. Both Euler angle representations and
numerical construction of the rotation matrix are used. The choice (body or space) representation of
the angular velocity is important and its implications are discussed. Also their are subtleties in the
construction of the angular velocity (Leubner 1981) and these are also discussed herein and in the
report of Alemi Ardakani & Bridges (2009f ).

There has been very little experimental work with vessels undergoing full 3D rotations. Most ex-
periments are with pure translations and/or planar rotations. A facility for 3D rotations of vessels
with fluid would be technically demanding. However, the paper of Disimile et al. (2009) mentions an
experimental facility capable of exciting a tank containing fluid in all 6 degrees of freedom. However,
to date they have only reported on results of forced roll motion.

Our principal tool for analyzing the SWEs is numerics. The numerical scheme is based on the
Abbott-Ionescu scheme which is widely used in computational hydraulics. It is a finite-difference
scheme, fully implicit, and the two-dimensionality is treated using an alternating direction implicit
scheme. A one-dimensional version of this scheme was used in Alemi Ardakani & Bridges (2009g).

An overview of the paper is as follows. In §§3-4 the SWEs (1.1) for sloshing in a vessel undergoing
motion in 3-space are derived starting from the full 3D Euler equations relative to a moving frame.

Before assuming that the Lagrangian vertical accelerations are small we analyze the exact equations
in §5 and show that they give an explanation for and a generalization to 3D of the Penney-Price-Taylor
theory for the highest standing wave.

The assumptions necessary for the reduction to a closed set of SWEs with the body motion exact
are discussed in §7, leading to a closed set of SWEs.

Details of the specification of the vessel motion are given in §8, including both an Euler angle
representation and direction calculation of the rotation matrix numerically. Further detail on the
special case of yaw-pitch-roll Euler angles is given in the report of Alemi Ardakani & Bridges (2009c).
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Figure 1. Schematic showing a configuration of the fixed coordinate system OXY Z relative to the moving
coordinate system, attached to the tank, Oxyz. The origin of the OXYZ coordinate system can have an
additional displacement q(t). In this figure q(t) = 0.

The DFP SWEs and HH SWEs are reviewed in the reports of Alemi Ardakani & Bridges (2009d)
and Alemi Ardakani & Bridges (2009e). A summary of the main assumptions in their derivation and
a comparison with the new surface SWEs is given in §9.

The numerical algorithm is introduced in §10. Further detail on the numerical scheme is contained
in the technical report of Alemi Ardakani & Bridges (2009f ).

Numerical results are reported in Sections 11 to 14. These simulations include full 3D rotations:
roll-pitch in §11 and yaw-pitch-roll in §14. Results of pure yaw forcing are report in §12. These
simulations show the appearance of vorticity, agree with previous simulations of Huang & Hsiung
(1996) and conserve a time-dependent form of potential vorticity. Motivated by simulations of Wu &
Chen (2009), diagonal surge-sway forcing is considered in §13, illustrating planarization of waves and
the appearance of square-like waves.

2. Governing equations
The configuration of the fluid in a rotating-translating vessel is shown schematically in Figure 1. The

vessel is a rigid body which is free to rotate and or translate in R3, and this motion will be specified.
The spatial frame, which is fixed in space, has coordinates denoted by X = (X,Y, Z), and the body
frame – a moving frame – is attached to the vessel and has coordinates denoted by x = (x, y, z).

The whole system is translating in space with translation vector q(t). The position of a particle in
the body frame is therefore related to a point in the spatial frame by

X = Q(x + d) + q ,

where Q is a proper rotation in R3 (QT = Q−1 and det(Q) = 1). The axis of rotation can be displaced
a distance d from the origin of the body frame and d = (d1, d2, d3) ∈ R3 is constant. The displacement
Qd could be incorporated into q(t) but in cases where the origin of the spatial frame is fixed, it will
be useful to maintain the distinction.

This formulation is consistent with the theory of rigid body motion, where an arbitrary motion
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can be described by the pair (Q(t),q(t)) with Q(t) a proper rotation matrix and q(t) a vector in R3

(O’Reilly 2008; Murray et al. 1994).
The body angular velocity is a time-dependent vector

Ω(t) = (Ω1(t),Ω2(t),Ω3(t)) ,

with entries determined from Q by

QT Q̇ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 := Ω̂ . (2.1)

The convention for the entries of the skew-symmetric matrix Ω̂ is such that

Ω̂r = Ω× r , for any r ∈ R3 , Ω := (Ω1,Ω2,Ω3) .

The body angular velocity is to be contrasted with the spatial angular velocity – the angular velocity
viewed from the spatial frame – which is

Ω̂spatial := Q̇QT .

As vectors the spatial and body angular velocities are related by Ωspatial = QΩ. Either representation
for the angular velocity can be used. For example Pantazopoulos (1988); Dillingham & Falzarano
(1986); Falzarano et al. (2002); Pantazopoulos & Adee (1987) all use the spatial representation,
whereas Huang & Hsiung (1996, 1997) use the body representation. We will show that the body
representation is the sensible choice leading to great simplification of the equations. Henceforth, the
angular velocity without a superannotation will represent the body angular velocity.

The velocity and acceleration in the spatial frame are

Ẋ = Q(ẋ + Ω× (x + d)) + q̇ . (2.2)

and

Ẍ = Q[ẍ + 2Ω× ẋ + Ω̇× (x + d) + Ω×Ω× (x + d) + QT q̈] . (2.3)

Newton’s law is expressed relative to the spatial frame, but substitution of (2.2)-(2.3) into Newton’s
law and multiplying by QT gives the governing equations relative to the body frame,

Du
Dt

+
1
ρ
∇p+ 2Ω× u + Ω̇× (x + d) + Ω× (Ω× (x + d)) + QT g + QT q̈ = 0 , (2.4)

where u = (u, v, w) is the velocity field,

D

Dt
:=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
and g := g

0
0
1

 ,

with g > 0 the gravitational constant. A detailed derivation is given in Appendix A of Alemi Ardakani
& Bridges (2009g). The term QT g rotates the usual gravity vector so that its direction is properly
viewed in the body frame. Similarly for the translational acceleration q̈. Further comments on the
viewpoint of the vessel velocity and acceleration are in §8.

In the derivation of the SWEs the components of (2.4) will be needed. Write the momentum equation
as

Du
Dt

+
1
ρ
∇p = F , (2.5)

then

F = −2Ω× u− Ω̇× (x + d)−Ω× (Ω× (x + d))−QT g −QT q̈ ,
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and the components of F are

F1 = −2(Ω2w − Ω3v)− Ω̇2(z + d3) + Ω̇3(y + d2)

−Ω1 Ω · (x + d) + (x+ d1)‖Ω‖2 − q̈ ·Qe1 − ge3 ·Qe1

F2 = +2(Ω1w − Ω3u) + Ω̇1(z + d3)− Ω̇3(x+ d1)

−Ω2 Ω · (x + d) + (y + d2)‖Ω‖2 − q̈ ·Qe2 − ge3 ·Qe2

F3 = −2(Ω1v − Ω2u)− Ω̇1(y + d2) + Ω̇2(x+ d1)

−Ω3 Ω · (x + d) + (z + d3)‖Ω‖2 − q̈ ·Qe3 − ge3 ·Qe3 .

The fluid occupies the region

0 6 x 6 L1 , 0 6 y 6 L2 , 0 6 z 6 h(x, y, t) ,

where the lengths L1 and L2 are given positive constants, and z = h(x, y, t) is the position of the free
surface.

Conservation of mass relative to the body frame takes the usual form

ux + vy + wz = 0 . (2.6)

The boundary conditions are

u = 0 at x = 0 and x = L1

v = 0 at y = 0 and y = L2

w = 0 at z = 0 ,

(2.7)

and at the free surface the boundary conditions are the kinematic condition

ht + uhx + vhy = w , at y = h(x, t) , (2.8)

and the dynamic condition
p = −ρσ div(κ) at y = h(x, t) , (2.9)

where σ > 0 is the coefficient of surface tension,

div(κ) =
∂κ1

∂x
+
∂κ2

∂y
,

and

κ1 =
hx√

1 + h2
x + h2

y

and κ1 =
hy√

1 + h2
x + h2

y

.

2.1. Vorticity
The vorticity vector is defined by

V := ∇× u ,

Differentiating this equation gives

DV

Dt
= V · ∇u +∇×

(
Du
Dt

)
. (2.10)

Taking the curl of the momentum equations (2.4) gives

∇×
(
Du
Dt

)
= 2Ω · ∇u− 2Ω̇ .

Combining with (2.10) gives the vorticity equation

DV

Dt
= (2Ω + V) · ∇u− 2Ω̇ .
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Two components of the vorticity equation will be important in the derivation of the surface SWEs,

∂

∂y

(
Dw

Dt

)
=

∂

∂z

(
Dv

Dt

)
+ 2Ω1

∂u

∂x
+ 2Ω2

∂u

∂y
+ 2Ω3

∂u

∂z
− 2Ω̇1

∂

∂x

(
Dw

Dt

)
=

∂

∂z

(
Dv

Dt

)
− 2Ω1

∂v

∂x
− 2Ω2

∂v

∂y
− 2Ω3

∂v

∂z
+ 2Ω̇2 .

(2.11)

3. Reduction of the pressure gradient
The derivation of the SWEs in 3D (1.1) follows the same strategy as the 2D case in Alemi Ardakani

& Bridges (2009g). The key is the precise treatment of the pressure field. Let

β(x, y, t) = −Ω̇1(y + d2) + Ω̇2(x+ d1)− Ω3Ω1(x+ d1)− Ω3Ω2(y + d2)−Qe3 · q̈− gQe3 · e3 . (3.1)

Then the vertical momentum equation can be expressed in the form

Dw

Dt
+

1
ρ

∂p

∂z
= −2(Ω1v − Ω2u) + (Ω2

1 + Ω2
2)(z + d3) + β(x, y, t) .

Integrate from z to h,∫ h

z

Dw

Dt
ds+

1
ρ
p

∣∣∣∣h
z

= −2Ω1

∫ h

z

v ds+ 2Ω2

∫ h

z

uds

+(Ω2
1 + Ω2

2)( 1
2h

2 − 1
2z

2 + d3h− d3z) + β(x, y, t)(h− z) .

Applying the surface boundary condition on the pressure then gives the pressure at any point z,

1
ρ
p(x, y, z, t) =

∫ h

z

Dw

Dt
ds+ 2Ω1

∫ h

z

v ds− 2Ω2

∫ h

z

uds− β(x, y, t)(h− z)

−(Ω2
1 + Ω2

2)( 1
2h

2 − 1
2z

2 + d3h− d3z)− σdiv(κ) .
(3.2)

This equation for p(x, y, z, t) is exact. The strategy is to take derivatives with respect to x and y and
then substitute into the horizontal momentum equations. The details are lengthy and are given in
Appendix A. The expressions are

1
ρ

∂p

∂x
=

Du

Dt

∣∣∣∣h
z

+
Dw

Dt

∣∣∣∣h hx + 2Ω2W − 2Ω3V + 2Ω̇2(h− z)− 2Ω2w + 2Ω3v

+2Ω1V hx − 2Ω2Uhx − (Ω2
1 + Ω2

2)(h+ d3)hx − βx(h− z)− βhx − σ∂x div(κ) .

(3.3)

and

1
ρ

∂p

∂y
=

Dv

Dt

∣∣∣∣h
z

+
Dw

Dt

∣∣∣∣hhy − 2Ω1W + 2Ω3U − 2Ω̇1(h− z) + 2Ω1w − 2Ω3u

+2Ω1V hy − 2Ω2Uhy − (Ω2
1 + Ω2

2)(h+ d3)hy − βy(h− z)− βhy − σ∂y div(κ) .

(3.4)

The pressure is eliminated from the horizontal momentum equations using (3.3) and (3.4). The details
will be given for the x−momentum equation and then the result will be stated for the y−momentum
equation.

4. Reduction of the horizontal momentum equation
The x−component of the momentum equations (2.4) is

Du

Dt
+

1
ρ

∂p

∂x
= −2(Ω2w − Ω3v)− Ω̇2(z + d3) + Ω̇3(y + d2)

−Ω1 Ω · (x + d) + (x+ d1)‖Ω‖2 −Qe1 · q̈− gQe1 · e3 .
(4.1)

Replace the second term on the left-hand side by the expression for ρ−1px in (3.3),
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Du

Dt
+
Du

Dt

∣∣∣∣h
z

+
Dw

Dt

∣∣∣∣hhx = −2Ω2W + 2Ω3V − 2Ω̇2(h− z)

−2Ω1V hx + 2Ω2Uhx + 2Ω2w − 2Ω3v

+(Ω2
1 + Ω2

2)(h+ d3)hx + βx(h− z) + βhx + σ∂xdiv(κ)

−2(Ω2w + Ω3v)− Ω̇2(z + d3) + Ω̇3(y + d2)

−Ω1 Ω · (x + d) + (x+ d1)‖Ω‖2 −Qe1 · q̈− gQe1 · e3 .

There are convenient cancellations: principally Du
Dt , 2Ω̇z and the interior Coriolis terms all cancel out.

Cancelling and using βx = Ω̇2 − Ω1Ω3, and the kinematic condition W = ht + Uhx + V hy gives

Du
Dt

∣∣∣∣h + Dw
Dt

∣∣∣∣h hx + 2Ω2(ht + Uhx + V hy)− 2Ω3V + 2Ω1V hx − 2Ω2Uhx

−(Ω2
1 + Ω2

2)(h+ d3)hx − (Ω2
2 + Ω2

3)(x+ d1) + Ω1Ω2(y + d2) + Ω1Ω3(h+ d3)

+Ω̇2(h+ d3)− Ω̇3(y + d2) + Qe1 · q̈ + gQe1 · e3 − βhx − σ∂xdiv(κ) = 0 .

(4.2)

Now use the fact that Du
Dt

∣∣∣∣h can be expressed purely in terms of surface variables since,

Ut + UUx + V Uy =
Du

Dt

∣∣∣∣h .
Substition into (4.2) reduces the x−momentum equation to an equation purely in terms of surface
variables

Ut + UUx + V Uy +

(
a11 +

Dw

Dt

∣∣∣∣h
)
hx + a12 hy = b1 + σ∂xdiv(κ) . (4.3)

The coefficients in this equation are

a11(x, y, t) = 2Ω1V − (Ω2
1 + Ω2

2)(h+ d3)− β

= 2Ω1V + Qe3 · q̈ + gQe3 · e3 − (Ω2
1 + Ω2

2)(h+ d3)

−(Ω̇2 − Ω1Ω3)(x+ d1) + (Ω̇1 + Ω3Ω2)(y + d2) ,

(4.4)

a12 = 2Ω2V , (4.5)
and

b1(x, y, t) = −2Ω2ht + 2Ω3V −Qe1 · q̈− gQe1 · e3 + (Ω2
2 + Ω2

3)(x+ d1)

+(Ω̇3 − Ω1Ω2)(y + d2)− (Ω̇2 + Ω1Ω3)(h+ d3) .
(4.6)

The use of the unit vectors e1, e2 and e3 is just to compactify notation. The terms with unit vectors
are interpreted as follows

Qe3 · e3 = Q33 ,

where Qij is the (i, j)−th entry of the matrix representation of Q and

Qe3 · q̈ = Q13q̈1 +Q23q̈2 +Q33q̈3 ,

with similar expressions for the other such terms.
A similar argument (see Appendix A.3) leads to the surface y−momentum equation

Vt + UVx + V Vy + a21 hx +

(
a22 +

Dw

Dt

∣∣∣∣h
)
hy = b2 + σ∂ydiv(κ) . (4.7)

with
a21 = −2Ω1U , (4.8)
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and
a22 = −2Ω2U − (Ω2

1 + Ω2
2)(h+ d3) + Qe3 · q̈ + gQe3 · e3

+(Ω̇1 + Ω2Ω3)(y + d2)− (Ω̇2 − Ω1Ω3)(x+ d1) .
(4.9)

and
b2 = 2Ω1ht − 2Ω3U −Qe2 · q̈− gQe2 · e3 + (Ω2

1 + Ω2
3)(y + d2)

−(Ω̇3 + Ω1Ω2)(x+ d1) + (Ω̇1 − Ω2Ω3)(h+ d3) .
(4.10)

The terms a11 and a22 are related by

a11 − 2Ω1V = a22 + 2Ω2U .

The surface SWEs (4.3) and (4.7) are exact. Moreover the assumption of finite depth has not been
used yet and so they are also valid in infinite depth. In order to reduce them to a closed system, the
only term that requires modelling is the Lagrangian vertical acceleration at the surface, Dw

Dt

∣∣h.

5. Penney-Price-Taylor theory for the highest standing wave
Before proceeding to reduce the surface equations to a closed set of shallow water equations a key

property of the exact equations is highlighted.
One of the simplest forms of sloshing waves is the pure standing wave. It is periodic in both space and

time. Penney & Price (1952) argue that the highest standing wave should occur when the Lagrangian
vertical acceleration at the crest is equal to −g. They consider standing waves in infinite depth only,
but it will be clear from the discussion below that their argument is also valid in finite depth. Their
argument – in the absence of surface tension – is that the pressure just inside the liquid near the
surface must be positive or zero and consequently at the surface ∂p

∂z 6 0 which is equivalent to

g +
Dw

Dt

∣∣∣∣h > 0 . (5.1)

When this condition is violated the standing wave should cease to exist. Taking into account that
Dw
Dt = ∂w

∂t at a crest, this is equation (67) in Penney & Price (1952). Using this theory they deduced
that the crest angle of the highest wave must be 90o, in contrast to the 120o angle of travelling waves.
Taylor (1953) was surprised by this argument and tested it by constructing an experiment. He was
mainly interesting in the crest angle. His experiments convincingly confirmed the conjecture of Penney
& Price (1952).

A theoretical justification of this theory can be deduced from the surface momentum equations.
For the case of 2D waves, this argument has been presented in Appendix F of Alemi Ardakani &
Bridges (2009g). Remarkably this argument carries over to 3D waves. Neglecting surface tension, and
assuming the vessel to be stationary, the surface momentum equations (4.3) and (4.7) reduce to

Ut + UUx + V Uy +
(
g + Dw

Dt

∣∣h)hx = 0

Vt + UVx + V Vy +
(
g + Dw

Dt

∣∣h)hy = 0 .

When g + Dw
Dt

∣∣h = 0, these equations reduce to

Ut + UUx + V Uy = 0

Vt + UVx + V Vy = 0 .

These equations are closed and indeed it is shown by Pomeau et al. (2008a) that they have an exact
similarity solution. Moreover this similarity solution gives a form of wave breaking, which has in turn
been confirmed by numerical experiments in Pomeau et al. (2008b). The theoretical argument in
Pomeau et al. (2008a) is by analogy with the shallow water equations but it is shown to be precise in
Bridges (2009). This theory indicates that any 3D standing waves will be susceptible to some form of
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breaking when the condition (5.1) is violated. Indeed photographs of the experiments of Taylor (1953)
show a form of crest instability near the highest standing wave – in the 2D case, and his experiments
also show a tendency to 3D near the highest wave. See also Figure 8(c) in Kobine (2008) which shows
3D standing waves reaching a maximum. Adding in surface tension and a rotating frame will add new
features to the theory. Surface tension will likely provide a smoothing effect, but rotation will likely
lead to a more complicated scenario for breaking.

In this paper we are interested in shallow water sloshing. In this case it is natural to assume that the
Lagrangian vertical accelerations at the surface are small, and so we will be working predominantly
in the region where the condition (5.1) is strongly satisfied.

6. Conservation of mass
The vertical average of the horizontal velocity is (u(x, y, t), v(x, y, t)) defined by

u :=
1
h

∫ h

0

u(x, y, z, t) dz and v :=
1
h

∫ h

0

v(x, y, z, t) dz . (6.1)

Differentiating

ht + (hu)x + (hv)y = ht + hxu

∣∣∣∣h +
∫ h

0
ux dz + hyv

∣∣∣∣h +
∫ h

0
vy dz

= ht + Uhx + V hy +
∫ h

0
(ux + vy + wz) dz −

∫ h

0
wz dz

= ht + Uhx + V hy −W + w

∣∣∣∣
z=0

= 0 ,

using ux + vy +wz = 0 = 0, the bottom boundary condition and the kinematic free surface boundary
condition. Hence, if (u, v) are used for the horizontal velocity field then the h−equation in the SWEs
in the form

ht + (hu)x + (hv)y = 0 , (6.2)

is exact.
However we are interested in an h−equation based on the surface horizontal velocity field. The

surface and average velocities are related by

U(x, y, t)− u(x, y, t) =
1
h

∫ h

0

zuz dz ,

V (x, y, t)− v(x, y, t) =
1
h

∫ h

0

zvz dz .
(6.3)

Use these identities to formulate the mass equation in terms of the surface velocity field. Differentiating
(6.3) and using mass conservation,

∂

∂x
[h(U − u)] +

∂

∂y
[h(V − v)] = W + hUx + hVy .

Replace W by the kinematic condition,

(h(U − u))x + (h(V − v))y = W + h(Ux + Vy) = ht + (hU)x + (hV )y .

The error in using the surface velocity field in the h−equation can be characterized two ways:

W + h(Ux + Vy) ≈ 0 or (h(U − u))x + (h(V − v))y ≈ 0 . (6.4)
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7. SWEs for 3D sloshing in a rotating vessel
To summarize, the candidate SWEs for (h, U, V ) are

ht + (hU)x + (hV )y = W + hUx + hVy

Ut + UUx + V Uy +

(
a11 + Dw

Dt

∣∣∣∣h
)
hx + a12 hy = b1 + σ∂xdiv(κ)

Vt + UVx + V Vy + a21 hx +

(
a22 + Dw

Dt

∣∣∣∣h
)
hy = b2 + σ∂ydiv(κ) .

(7.1)

The equation for W can be added

Wt + UWx + VWy =
Dw

Dt

∣∣∣∣h . (7.2)

The system (7.1) with or without (7.2) is not closed. If Dw
Dt

∣∣∣∣h is specified, then the system of four

equations (7.1)-(7.2) for (h, U, V,W ) is closed. This system of four equations can be further reduced
to a system of 3 equations with an additional assumption on the surface vertical velocity.

Henceforth it is assumed that the vertical velocity at the free surface satisfies∣∣W + hUx + hVy

∣∣ << 1 , (SWE-1)

and the Lagrangian vertical acceleration at the free surface satisfies∣∣∣∣DwDt ∣∣h
∣∣∣∣ << |a11| and

∣∣∣∣DwDt ∣∣h
∣∣∣∣ << |a22| . (SWE-2)

The assumption (SWE-1) has an alternative characterization as shown in (6.4). For small vessel
motion, the second assumption (SWE-2) is equivalent to assuming that the Lagrangian vertical
accelerations are small compared with the gravitational acceleration, equivalent to (5.1).

Under the assumptions (SWE-1) and (SWE-2) and under the additional assumption that σ = 0
(neglect of surface tension), the SWEs are hyperbolic. When σ 6= 0 they are dispersive, for in that
case

div(κ) =
∂κ1

∂x
+
∂κ2

∂y
= hxx + hyy + · · · ,

where the dots correspond to nonlinear terms in h and its derivatives. Hence the σ terms in the
right-hand side of (U, V ) equations in (7.1) have the form

∂xdiv(κ) = hxxx + hyyx + · · · ,

∂ydiv(κ) = hxxy + hyyy + · · · .

At the linear level, these terms add dispersion to the SWEs. They will also require additional boundary
conditions at the walls (cf. Billingham 2002; Kidambi & Shankar 2004), as a contact angle effect
appears at the vessel walls. In this paper we will be primarily concerned with long waves and so will
henceforth neglect surface tension:

σ = 0 . (SWE-3)

8. Prescribing the rigid-body motion of the vessel
The fluid vessel is a rigid body free to undergo any motion in 3−dimensional space. Every rigid body

motion in R3 is uniquely determined by (q(t),Q(t)) where q(t) is the 3−component translation vector
and Q(t) is an orthogonal matrix with unit determinant (cf. Chapter 7 of O’Reilly 2008). In terms of
the body coordinates, the translations are surge, sway and heave, and the rotations are labelled roll,
pitch and yaw as illustrated in Figure 2.

Translations are straightforward to prescribe and need no special attention other than to be careful
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z

yaw

pitch

y

sway

roll

x
surge

heave

Figure 2. Diagram showing conventions for roll, pitch, yaw, surge, sway and heave.

about whether the spatial or body representation is used. In this paper q(t) is the translation of the
body relative to the spatial frame. If the translation is specified from onboard the vessel – that is,
specifying the surge, sway and heave directly – then the accelerations are related by

q̈ surge
1

q̈ sway
2

q̈ heave
3

 =


Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33



q̈1

q̈2

q̈3

 .

The natural approach in the context of expermiments is to specify the absolute translations along
with the rotations. Although we are not aware of any experiments which combine both. The paper
of Disimile et al. (2009) indicates that their experimental facility for sloshing has the capability to
produce all 6 degrees of freedom in the forcing, but only planar motions are reported so far.

On the other hand specification of the rotations requires some care. The set of orthogonal matrices is
highly nonlinear and in R3 the rotation matrices are no longer commutative in general. The simplest
way to specify a rotation is to use Euler angles. However, even here one must be careful because
Euler angle representations are inherently singular, and their are subtleties in the deduction of the
appropriate angular velocity.

The construction of Q(t) can also be approached directly using numerical integration. The rotation
matrix satisfies the differentiation equation

Q̇ = QΩ̂ , Q(0) = I , (8.1)

where Ω̂ is the matrix representation of the body angular velocity (2.1). This approach is most
effective if the angular velocity is given. One setting where the body angular velocity is available is in
strapdown inertial navigation systems (e.g. Chapter 11 of Titterton & Weston 2004). The navigation
system outputs the body angular velocity and then (8.1) is solved numerically for Q(t) (called the
attitude matrix in navigation literature).

Another efficient approach to constructing rotation matrices is the use of quaternions. Quaternions
are now widely used in computer graphics algorithms (Hanson 2006) and in molecular dynamics (Evans
1977; Rapaport 1985). Evans (1977) points out that ”quaternion [computer] programmes seem to run
ten times faster than corresponding [computer] programmes employing Euler angles.” However in our
case the computing time for the rotations is very small compared to the computing time for the fluid
motion, so the simpler approach of computing Q directly by integrating (8.1) is adapted.

The differential equation (8.1) can be integrated numerically very efficiently, although the choice of
numerical integrator is very important as it is essential to maintain orthogonality to machine accuracy.
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xX ,

z

Z

y

Y

φ , roll

θ , pitch

Figure 3. Schematic of the roll-pitch motion in terms of Euler angles φ and θ.

An efficient second-order algorithm for (8.1) is the implicit midpoint rule (Leimkuhler & Reich 2004)
with discretization

Qn+1 −Qn

∆t
=
(

Qn+1 + Qn

2

)
Ω̂
(
tn+ 1

2

)
,

where Ω̂(t) is treated as given; rearranging

Qn+1 = Qn + 1
2∆t

(
Qn+1 + Qn

)
Ω̂
(
tn+ 1

2

)
.

Setting

Sn+
1
2 = 1

2∆tΩ̂
(
tn+ 1

2

)
,

one time step is represented by

Qn+1 = Qn

(
I + Sn+

1
2

)(
I− Sn+

1
2

)−1

. (8.2)

Since Sn is skew-symmetric, the term (I+Sn)(I−Sn)−1 is orthogonal. Hence orthogonality is preserved
to machine accuracy at each time step.

The implicit midpoint rule is a special case of the Gauss-Legendre Runge-Kutta (GLRK) methods
which have been shown to preserve orthogonality to machine accuracy, and they can be constructed
to any order of accuracy (Leimkuhler & Reich 2004). There are other effective and efficient methods
for integrating the equation (8.1) and some recent developments are reviewed in Romero (2008).

8.1. Euler angles – roll-pitch rotation
Roll-pitch motion is the simplest non-commutative rotation that is of interest in ship dynamics. The
roll-pitch excitation has been used by a number of authors for forced sloshing (e.g. Pantazopoulos
1988, 1987; Faltinsen et al. 2006b; Huang & Hsiung 1996, 1997; Huang 1995).

In this subsection the properties of the Euler angle representation of roll-pitch are recorded. The
roll-pitch rotation consists of a counterclockwise roll rotation about the x−axis with angle φ, followed
by a counterclockwise pitch rotation about the current y−axis, as illustrated schematically in Figure
3. After converting both rotations to the same basis the rotation matrix takes the form

Q =

 cos θ 0 sin θ
sinφ sin θ cosφ − sinφ cos θ
− cosφ sin θ sinφ cosφ cos θ

 . (8.3)
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From this expression the body representation of the angular velocity is easily deduced using QT Q̇ = Ω̂
and so

Ω =

φ̇ cos θ
θ̇

φ̇ sin θ

 . (8.4)

The spatial angular velocity is obtained by multiplication of Ω by Q. A derivation of the roll-pitch
angular velocity from first principles is given in Alemi Ardakani & Bridges (2009d).

If θ and φ are considered as small, then the approximate body angular velocity is

Ω ≈
(
φ̇, θ̇, 0

)
, (8.5)

obtained by neglecting quadratic and higher-order terms in (8.4). This simplified version of the angular
velocity has been used by Pantazopoulos (1988, 1987), Falzarano et al. (2002) and Faltinsen et al.
(2006b). A significant problem with this simplification is that the rotation has been qualitatively
changed: the body and spatial represenations are equal and so it behaves like a planar rotation.
Secondly, in a numerical context this simplification is not necessary.

8.2. Yaw-pitch-roll rotation and 3-2-1 Euler angles
The yaw-pitch-roll rotation is one of the most widely used Euler angle sequences (see §6.8.1 of O’Reilly
(2008) where they are called the 3-2-1 Euler angle sequence). It was first used in the context of sloshing
by Huang (1995) and Huang & Hsiung (1996, 1997).

The 3-2-1 Euler angle sequence starts with a yaw rotation about the z−axis with angle ψ, followed
by a pitch rotation about the new y−axis denoted by θ, followed by a roll rotation about the new
x−axis denoted by φ. The composite rotation is

Q =

cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ

 . (8.6)

The body angular velocity is computed to be

Ω =

 φ̇− ψ̇ sin θ
ψ̇ cos θ sinφ+ θ̇ cosφ
ψ̇ cos θ cosφ− θ̇ sinφ

 . (8.7)

Full details of the 3-2-1 Euler angles and the derivation of the angular velocity are given in Alemi
Ardakani & Bridges (2009c).

In matrix form the angular velocity is related to the Euler angles by

Ω = B−1Θ̇ ,

with

B =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 and Θ :=

φθ
ψ

 .

This is the form of the angular velocity used in Huang (1995) and Huang & Hsiung (1997). The
singularity of this Euler angle representation arises due to the non-invertibility of B:

det(B) = sec θ ,

and so to avoid the singularity the restriction − 1
2π < θ < 1

2π is required. In the context of ship
dynamics this is not a severe restriction.

If all three angles are small then B is approximately the identity and

Ω ≈

φ̇θ̇
ψ̇

 .
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This approximation is appealing, since then Ω = Θ̇ and Ω̇ = Θ̈, with Θ = (φ, θ, ψ). But the spatial
and body representations are equal, and so the approximate rotation is qualitatively different from
the exact rotation. In the numerical setting an approximation is not needed and the exact expression
is used.

8.3. Harmonic forcing
Harmonic motion can be specified by expressing the Euler angles in terms of harmonic motion. For
example in the case of roll-pitch with the same frequency and phase, but different amplitudes,

φ(t) = ε1 cosωt and θ(t) = ε2 cosωt .

In choosing the forcing frequency it is not the value of the frequency that is important but its value
relative to the natural frequency. In the limit of shallow water, the natural frequencies of the fluid are

ωmn = π
√
gh0

(
m2

L2
1

+
n2

L2
2

)1/2

. (8.8)

9. Review of previous derivations of rotating SWEs for sloshing
Two derivations of the SWEs for fluid in a vessel that is undergoing a general rigid-body motion

in three dimensions first appeared in the literature at about the same time, given independently by
Dillingham & Falzarano (1986) and Pantazopoulos (1987). Both derivations follow the same strategy.
Their respective derivations are an extension of the formulation for two-dimensional shallow water
flow in a rotating frame in Dillingham (1981).

This review of their derivation serves two purposes. It shows how the choice of representation of
the angular velocity is very important, and secondly, it shows how the new SWEs in §7 compare with
previous work. Hereafter these equations (introduced below in equation (9.2)) will be called the DFP
SWEs.

The DFP derivation starts with the classical SWEs

ut + uux + vuy + ghx = 0

vt + uvx + vvy + ghy = 0

ht + (hu)x + (hv)y = 0 .

(9.1)

Then replace g with the vertical acceleration of the moving frame, and add the horizontal accelerations
to the right hand side of the two momentum equations, leading to

ut + uux + vuy + a(z)hx = f1

vt + uvx + vvy + a(z)hy = f2

ht + (hu)x + (hv)y = 0 ,

(9.2)

with
f1 = −n̈1 cos θ − n̈2 sinφ sin θ + n̈3 sin θ cosφ− 2ω1ω2x sinφ sin θ cos θ

−ω1ω2y cosφ cos θ − ω1ω2zd sinφ(sin2 θ − cos2 θ) + ω2
1x sin2 θ

−ω2
1zd sin θ cos θ + ω2

2x(1− sin2 θ sin2 φ)− ω2
2y sinφ sin θ cosφ

+ω2
2zd sin θ sin2 φ cos θ + 2ω1v sin θ − 2ω2v sinφ cos θ + ω̇1y sin θ

+ω̇2y sinφ cos θ − ω̇2zd cosφ+ g sin θ cosφ ,

(9.3)

f2 = −n̈2 cosφ− n̈3 sinφ+ ω2
1y − ω2

2x sinφ sin θ cosφ+ ω2
2y sin2 φ

+ω2
2zd sinφ cosφ cos θ − ω1ω2x cosφ cos θ − ω1ω2zd sin θ cosφ

−2ω1u sin θ + 2ω2u sinφ cos θ − ω̇1x sin θ + ω̇1zd cos θ

+ω̇2x sinφ cos θ + ω̇2zd sin θ sinφ− g sinφ ,

(9.4)
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and the vertical acceleration is

a(z) = n̈1 sin θ − n̈2 sinφ cos θ + n̈3 cosφ cos θ + ω1ω2x sinφ(sin2 θ − cos2 θ)

+ω1ω2y sin θ cosφ− 2ω1ω2zd sinφ sin θ cos θ

+ω2
1x sin θ cos θ − ω2

1zd cos2 θ − ω2
2x sin θ sin2 φ cos θ

−ω2
2y sinφ cosφ cos θ − ω2

2zd(1− sin2 φ cos2 θ) + 2ω1v cos θ

+2ω2v sinφ sin θ − 2ω2u cosφ+ ω̇1y cos θ − ω̇2x cosφ

+ω̇2y sinφ sin θ + g cosφ cos θ .

(9.5)

The notation follows the original sources, and several typos have been corrected. n = (n1, n2, n3) in
these equations is the same as q in §2, and ω = (ω1, ω2, ω3) is the spatial representation of the angular
velocity. The other terms will be defined shortly.

At first glance this formulation does not look anything like the rotating SWEs proposed in §7. This
discrepancy concerned us greatly, and we undertook a careful investigation of the assumptions and
properties of the DFP equations. The details of that investigation, including correction of the various
typos and omissions, is recorded in the report of Alemi Ardakani & Bridges (2009d). Here we will
highlight the main features of the derivation leading to (9.2).

Let X = (X,Y, Z) be coordinates for the fixed spatial frame and let x = (x, y, z) be coordinates for
the body frame. Then DFP use the following relationship between the fixed frame and the moving
frame

X = Q(x + d) + n ,

with n identified with q in §2. They impose the following assumptions on x and d

x =

xy
0

 , (DFP-1)

and

d =

 0
0
zd

 . (DFP-2)

The implication of assumption (DFP-1) is that they are restricting the 3D equations to the plane
z = 0. The second assumption (DFP-2) is just a choice of axis of rotation and could be generalized
within the DFP derivation.

The only forcing considered is roll-pitch of the form in §8.1. The rotation matrix is restricted to

Q =

 cos θ 0 sin θ
sinφ sin θ cosφ − sinφ cos θ
− cosφ sin θ sinφ cosφ cos θ

 . (DFP-3)

This matrix is given explicitly in equation (6) on page 29 of Pantazopoulos (1987).
A key assumption in these equations is the use of spatial angular velocity rather than body angular

velocity and the assumption

ω3 = 0 . (DFP-4)

This assumption is a curiosity. It is certainly not necessary in a numerical context, and it is inconsistent
since the third component of the body angular velocity is not zero.

The body angular velocity and spatial angular velocity are related by

Ω = QTω =

φ̇ cos θ
θ̇

φ̇ sin θ

 .
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Assuming θ and φ small gives

ω ≈

 φ̇

θ̇

φθ̇

 and Ω ≈

 φ̇

θ̇

θφ̇

 .

If we further neglect the quadratic terms φθ̇ and θφ̇ then the angular velocities reduce to

ω = Ω =

φ̇θ̇
0

 .

This is the approximation used explicitly by Falzarano et al. (2002) and is implicitly used in Panta-
zopoulos (1988, 1987). Formalizing this assumption

φ ≈ 0 and θ ≈ 0 . (DFP-5)

However, the development of the DFP SWEs does not invoke assumption (DFP-5) until after the
equations are derived. With just assumption (DFP-4) the spatial and body accelerations are related
by

Ω1 = ω1 cos θ + ω2 sinφ sin θ

Ω2 = ω2 cosφ

Ω3 = ω1 sin θ − ω2 sinφ cos θ .

(9.6)

Using assumption (DFP-3) the translation and gravity terms can be expressed using Q,

n̈ ·Qe1 = n̈1 cos θ + n̈2 sinφ sin θ − n̈3 cosφ sin θ ,

and

ge3 ·Qe1 = −g cosφ sin θ .

Using these two expressions, (9.6), and some calculation we find that f1 simplifies to

f1 = −n̈ ·Qe1 + (Ω2
2 + Ω2

3)x− Ω1Ω2y − Ω1Ω3zd

+2Ω3v − Ω̇2zd + Ω̇3y − ge3 ·Qe1 .
(9.7)

A similar construction shows that

f2 = −n̈ ·Qe2 + (Ω2
1 + Ω2

3)y − Ω1Ω2x− Ω2Ω3zd

−2Ω3u+ Ω̇1zd − Ω̇3x− ge3 ·Qe2 .
(9.8)

The simplification in the expressions (9.7) and (9.8) over the original expressions (9.3) and (9.4) is
remarkable. The simplification is due first to the use of the body angular velocity and secondly to the
explicit use of the rotation operator. These formulae are verified by substitution and the details are
given in Alemi Ardakani & Bridges (2009d).

The vertical acceleration term can also be simplified to

a(z) = n̈ ·Qe3 − (Ω2
1 + Ω2

2)zd + Ω1Ω3x+ Ω2Ω3y

+2Ω1v − 2Ω2u+ Ω̇1y − Ω̇2x+ ge3 ·Qe3 .
(9.9)

Now that the DFP SWEs look a little more like the surface SWEs in §7 we can compare the two
systems.

The velocity field (U, V ) is not the same as the velocity field in the DFP SWEs. DFP do not
specify exactly which horizontal velocity they use but their h−equation becomes exact if the average
horizonatal velocity is used. In any case, assume for purposes of comparison that (U, V ) ≈ (u, v), and
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then the coefficients in the two systems can be compared.

a11 = a(z) + 2Ω2U − (Ω2
1 + Ω2

2)h− (Ω̇2 − Ω1Ω3)d1 + (Ω̇1 + Ω2Ω3)d2

a12 = aDFP
12 + 2Ω2V

a21 = aDFP
21 − 2Ω1U

a22 = a(z) − 2Ω1V − (Ω2
1 + Ω2

2)h− (Ω̇2 − Ω1Ω3)d1 + (Ω̇1 + Ω2Ω3)d2 .

In the DFP SWEs aDFP
12 and aDFP

21 are identically zero but their symbols are included for comparison.
The right-hand side coefficient comparison is

b1 = f1 − 2Ω2ht + (Ω2
2 + Ω2

3)d1 + (Ω̇3 − Ω1Ω2)d2 − (Ω̇2 + Ω1Ω3)h

b2 = f2 + 2Ω1ht + (Ω2
1 + Ω2

3)d2 − (Ω̇3 + Ω1Ω2)d1 + (Ω̇1 − Ω2Ω3)h

The d1 and d2 error terms are not so important since they could be included in the DFP formulation
so they can be discounted. The discrepancy between the two formulations is still quite significant
when the rotation field is present. This discrepancy is due to the fact that the DFP SWEs have more
assumptions than the surface SWEs.

9.1. Review of the HH SWEs
Another strategy for deriving the SWEs for fluid in a vessel that is undergoing a general rigid-body
motion in three dimensions has been proposed by Huang (1995) and Huang & Hsiung (1996, 1997).
Their derivation is more precise, and starts with the full 3D equations. A detailed report on their
derivation is given in Alemi Ardakani & Bridges (2009e). Here a sketch of their derivation is given
including a comparison with the DFP SWEs and the surface equations in §7. They explicitly take
u(x, y, z, t) and v(x, y, z, t) to be independent of z but implicitly they are using the average horizontal
velocity field (u, v). They neglect the vertical acceleration in general (not just at the free surface)
and integrate the vertical pressure gradient, differentiate and then substitute into the horizontal
momentum equations. However due to these assumptions extraneous terms appear which require
additional assumptions:

2Ω2w ≈ 0 , 2Ω1w ≈ 0 , (Ω1vx − Ω2ux)h ≈ 0 , (Ω1vy − Ω2uy)h ≈ 0 .

The rotation matrix Q is restricted to the yaw-pitch-roll rotation discussed in §8.2, and they use the
body angular velocity representation.

Their derivation leads to SWEs of the form

ut + uux + vuy + aHH
11 hx = bHH

1 ,

vt + uvx + vvy + aHH
22 hy = bHH

2 ,

ht + (hu)x + (hv)y = 0 ,

(9.10)

where the (u, v) velocity field here should be interpreted as the average velocity field (u, v). To compare
these HH SWEs with new surface equations, assume that the (U, V ) velocity field in the surface
equations is equivalent to the velocity field in the HH SWEs, and compare coefficients

aHH
11 = a11 − 2Ω2u ,

aHH
22 = a22 + 2Ω1v ,

aHH
12 = a12 − 2Ω2v ,

aHH
21 = a21 + 2Ω1u ,

bHH
1 = b1 + 2Ω2ht + Ω̇2h ,

bHH
2 = b2 − 2Ω1ht − Ω̇1h .

(9.11)

The agreement between the HH SWEs and the surface SWEs is much better than the case of the
DFP SWEs but there are still important differences when Ω1 and Ω2 are important. One case where
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the surface equations and the HH SWEs agree exactly (assuming equivalence of the velocity fields) is
when the forcing is pure yaw motion, and numerical experiments on this case are discussed in §12.

10. Numerical algorithm for shallow-water sloshing

The numerical method we propose for simulation of shallow water sloshing in a vehicle undergoing
rigid body motion is an extension of the numerical scheme in Alemi Ardakani & Bridges (2009g). It
is a finite difference scheme, using centered differencing in space. It is fully implicit and has a block-
tridiagonal structure. The basic formulation of the algorithm was first proposed by Leendertse (1967)
and refined by Abbott and Ionescu and is widely used in computational hydraulics (cf. Abbott 1979).
The only new features in the algorithm are extension to include a fully 3D rotation and translation
field, and exact implementation of boundary conditions. The fact that the scheme is implicit makes
the introduction of rotations straightforward. Some explicit schemes are unstable in the presence of
rotation.

The one-dimensional version of the algorithm was used in Alemi Ardakani & Bridges (2009g) and
the two-dimensional version is just a concatentation of this scheme: the time step is split into two
steps and an alternating direction implicit algorithm is used: implicit in x−direction and explicit in
the y−direction in the first half step and explicit in x−direction and implicit in the y−direction in
the second half step. One of the nice properties of the scheme is that the boundary conditions at the
walls are implemented exactly, even at the intermediate time steps.

The scheme has numerical dissipation, but the form of the dissipation is similar to the action
of viscosity. The truncation error is of the form of the heat equation and so is strongly wavenumber
dependent. Moreover the numerical dissipation follows closely the hydraulic structure of the equations.
See the technical report of Alemi Ardakani & Bridges (2009f ) for an analysis of the form of the
numerical dissipation. The numerical dissipation is helpful for eliminating transients and spurious
high-wavenumber oscillation in the formation of travelling hydraulic jumps.

In contrast, Pantazopoulos (1987) and Pantazopoulos (1988) use Glimm’s method. Glimm’s method
is very effective for treating a large number of travelling hydraulic jumps, but the solutions are dis-
continuous, and the scheme has problems with mass conservation. Huang & Hsiung (1996, 1997) use
flux-vector splitting. This method involves computing eigenvalues of the Jacobian matrices, and is
effective for tracking multi-directional characteristics. It appears to be very effective and accurate but
is more complicated to implement than the scheme proposed here.

Setting up the equations for this scheme is straightforward and follows the one-dimensional con-
struction in Alemi Ardakani & Bridges (2009g), but the details are lengthy. Hence we have given a
detailed construction of the algorithm in an internal report (Alemi Ardakani & Bridges 2009f ) and
in this section just the main features are highlighted.

Rewrite the governing equations in a form suitable for the first half-step of the scheme,

ht + h?Ux + U?hx + hVy + V hy = 0

Ut + U?Ux + V Uy + 2Ω2V hy + 2Ω2ht

+
[
α(x, y, t) + 2Ω1V

? −
(
Ω2

1 + Ω2
2

)
h?
]
hx = 2Ω3V −

(
Ω̇2 + Ω1Ω3

)
h+ β̂(x, y, t)

Vt + U?Vx + V Vy − 2Ω1U
?hx − 2Ω1ht

+
[
α(x, y, t)− 2Ω2U −

(
Ω2

1 + Ω2
2

)
h
]
hy = −2Ω3U +

(
Ω̇1 − Ω2Ω3

)
h+ β̃(x, y, t) ,

(10.1)
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Figure 4. A schematic of the grid layout.

where α, β̂ and β̃ are the terms that are independent of h, U and V ,

α(x, y, t) = −
(
Ω2

1 + Ω2
2

)
d3 +

(
Ω̇1 + Ω2Ω3

)
(y + d2) +

(
Ω1Ω3 − Ω̇2

)
(x+ d1)

+Qe3 · q̈ + gQe3 · e3

β̂(x, y, t) = −
(

Ω̇2 + Ω1Ω3

)
d3 +

(
Ω̇3 − Ω1Ω2

)
(y + d2) +

(
Ω2

2 + Ω2
3

)
(x+ d1)

−Qe1 · q̈− gQe1 · e3

β̃(x, y, t) =
(

Ω̇1 − Ω2Ω3

)
d3 −

(
Ω̇3 + Ω1Ω2

)
(x+ d1) +

(
Ω2

1 + Ω2
3

)
(y + d2)

−Qe2 · q̈− gQe2 · e3 .

(10.2)

The terms with ? superscript are nonlinear terms that are treated implicitly. In this first half step
only x−derivatives are implicit and y−derivatives are explicit. The nonlinearity is addressed using
iteration.

The x−interval 0 6 x 6 L1 is split into II − 1 intervals of length ∆x = L1
II−1 and so

xi := (i− 1)∆x , i = 1, . . . , II ,

and the y−interval 0 6 y 6 L2 is split into JJ − 1 intervals of length ∆y = L2
JJ−1 and so

yj := (j − 1)∆y , j = 1, . . . , JJ ,

and

hn
i,j := h(xi, yj , tn), Un

i,j := U(xi, yj , tn) and V n
i,j := V (xi, yj , tn) ,

where tn = n∆t with ∆t the fixed time step. A schematic of the grid is in Figure 4.
The discretization of the mass equation is

h
n+ 1

2
i,j − hn

i,j

1
2∆t

+ h?
i,j

U
n+ 1

2
i+1,j − U

n+ 1
2

i−1,j

2∆x
+ U?

i,j

h
n+ 1

2
i+1,j − h

n+ 1
2

i−1,j

2∆x

+hn
i,j

V n
i,j+1 − V n

i,j−1

2∆y
+ V n

i,j

hn
i,j+1 − hn

i,j−1

2∆y
= 0 .

(10.3)
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The discretizations of the equations for U, V are

U
n+ 1

2
i,j −Un

i,j
1
2 ∆t

+ U?
i,j

U
n+ 1

2
i+1,j−U

n+ 1
2

i−1,j

2∆x + V n
i,j

Un
i,j+1−Un

i,j−1
2∆y + 2Ωn+ 1

2
2 V n

i,j
hn

i,j+1−hn
i,j−1

2∆y

+
[
α

n+ 1
2

i,j + 2Ωn+ 1
2

1 V ?
i,j −

((
Ωn+ 1

2
1

)2

+
(

Ωn+ 1
2

2

)2
)
h?

i,j

]
h

n+ 1
2

i+1,j−h
n+ 1

2
i−1,j

2∆x

= 2Ωn+ 1
2

3 V
n+ 1

2
i,j −

(
Ω̇n+ 1

2
2 + Ωn+ 1

2
1 Ωn+ 1

2
3

)
h

n+ 1
2

i,j − 2Ωn+ 1
2

2

h
n+ 1

2
i,j −hn

i,j
1
2 ∆t

+ β̂
n+ 1

2
i,j

V
n+ 1

2
i,j −V n

i,j
1
2 ∆t

+ U?
i,j

V
n+ 1

2
i+1,j−V

n+ 1
2

i−1,j

2∆x + V n
i,j

V n
i,j+1−V n

i,j−1
2∆y − 2Ωn+ 1

2
1 U?

i,j

h
n+ 1

2
i+1,j−h

n+ 1
2

i−1,j

2∆x

+
[
α

n+ 1
2

i,j − 2Ωn+ 1
2

2 Un
i,j −

((
Ωn+ 1

2
1

)2

+
(

Ωn+ 1
2

2

)2
)
hn

i,j

]
hn

i,j+1−hn
i,j−1

2∆y

= −2Ωn+ 1
2

3 U
n+ 1

2
i,j +

(
Ω̇n+ 1

2
1 − Ωn+ 1

2
2 Ωn+ 1

2
3

)
h

n+ 1
2

i,j + 2Ωn+ 1
2

1

h
n+ 1

2
i,j −hn

i,j
1
2 ∆t

+ β̃
n+ 1

2
i,j ,

(10.4)

where

αn
i,j := α(xi, yj , tn), β̂n

i,j := β̂(xi, yj , tn) and β̃n
i,j := β̃(xi, yj , tn) .

By setting

zn
i,j =

hn
i,j

Un
i,j

V n
i,j

 ,
equations (10.3)-(10.4) can be written in block tridiagonal form

−?An+ 1
2

i,j zn+ 1
2

i−1,j + Bn+ 1
2 zn+ 1

2
i,j + ?An+ 1

2
i,j zn+ 1

2
i+1,j = Cn+ 1

2
i,j zn

i,j−1 + Dn+ 1
2 zn

i,j

−Cn+ 1
2

i,j zn
i,j+1 + βn+ 1

2
i,j .

(10.5)

The ? left subscript is an indication that the matrix depends on h? and/or U?. Expressions for the
matrices are given in (Alemi Ardakani & Bridges (2009f )). For fixed j = 2, . . . , JJ − 1 the equations
(10.5) are applied for i = 2, . . . , II − 1. To complete the tridiagonal system equations are needed (for
each fixed j) at i = 1 and i = II.

10.1. The equations at i = 1 and i = II for j = 2, . . . , JJ − 1

The equations at i = 1 and i = II are obtained from the boundary conditions at x = 0 and x = L1.
The only boundary condition at x = 0 is U(0, y, t) = 0. The discrete version of this is

Un
1,j = 0 and

Un
0,j + Un

2,j

2
= 0 , for each j , and for all n ∈ N . (10.6)

To obtain a boundary condition for h, use the mass equation at x = 0

ht + h?Ux + hVy + V hy = 0 ,

with discretization

h
n+ 1

2
1,j + ∆t

2∆xh
?
1,jU

n+ 1
2

2,j = hn
1,j − ∆t

4∆yh
n
1,j

(
V n

1,j+1 − V n
1,j−1

)
− ∆t

4∆yV
n
1,j

(
hn

1,j+1 − hn
1,j−1

)
. (10.7)

To obtain a boundary condition for V , use the y−momentum equation at x = 0

Vt + V Vy − 2Ω1ht +
[
α(x, y, t)−

(
Ω2

1 + Ω2
2

)
h
]
hy =

(
Ω̇1 − Ω2Ω3

)
h+ β̃(x, y, t) ,
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with discretization

V
n+ 1

2
1,j −

[
2Ωn+ 1

2
1 + 1

2∆t
(

Ω̇n+ 1
2

1 − Ωn+ 1
2

2 Ωn+ 1
2

3

)]
h

n+ 1
2

1,j = V n
1,j − ∆t

4∆yV
n
1,j

(
V n

1,j+1 − V n
1,j−1

)
− ∆t

4∆y

̂
α

n+ 1
2

1,j

(
hn

1,j+1 − hn
1,j−1

)
−2Ωn+ 1

2
1 hn

1,j + 1
2∆tβ̃n+ 1

2
1,j ,

(10.8)
where

α̂n
i,j = αn

i,j −
(

(Ωn
1 )2 + (Ωn

2 )2
)
h

n− 1
2

i,j .

Combining equations (10.6), (10.7) and (10.8) gives the equation for i = 1

En+ 1
2 zn+ 1

2
1,j + ?F1,jz

n+ 1
2

2,j = Gn+ 1
2

1,j zn
1,j−1 + Hn+ 1

2 zn
1,j −Gn+ 1

2
1,j zn

1,j+1 +1 β
n+ 1

2
1,j . (10.9)

Expressions for the matrices are given in Alemi Ardakani & Bridges (2009f ). A similar strategy is
used to construct the discrete equations at x = L1.

10.2. Summary of the equations for j = 2, . . . , JJ − 1
This completes the construction of the block tridiagonal system at j−interior points. For each fixed
j = 2, . . . , JJ − 1, and fixed h?, U? and V ?, we solve the following block tridiagonal system

En+ 1
2 zn+ 1

2
1,j + ?F1,jz

n+ 1
2

2,j = Gn+ 1
2

1,j zn
1,j−1 + Hn+ 1

2 zn
1,j

−Gn+ 1
2

1,j zn
1,j+1 +1 β

n+ 1
2

1,j ,

−?An+ 1
2

2,j zn+ 1
2

1,j + Bn+ 1
2 zn+ 1

2
2,j + ?An+ 1

2
2,j zn+ 1

2
3,j = Cn+ 1

2
2,j zn

2,j−1 + Dn+ 1
2 zn

2,j

−Cn+ 1
2

2,j zn
2,j+1 + βn+ 1

2
2,j ,

−?An+ 1
2

3,j zn+ 1
2

2,j + Bn+ 1
2 zn+ 1

2
3,j + ?An+ 1

2
3,j zn+ 1

2
4,j = Cn+ 1

2
3,j zn

3,j−1 + Dn+ 1
2 zn

3,j

−Cn+ 1
2

3,j zn
3,j+1 + βn+ 1

2
3,j ,

...
...

−?FII,jz
n+ 1

2
II−1,j + En+ 1

2 zn+ 1
2

II,j = Gn+ 1
2

II,j zn
II,j−1 + Hn+ 1

2 zn
II,j

−Gn+ 1
2

II,j zn
II,j+1 +1 β

n+ 1
2

II,j .

(10.10)

Special boundary systems are constructed for the lines j = 1 and j = JJ . These systems are exactly
constructed using boundary conditions and the details are given in Alemi Ardakani & Bridges (2009f ).

This completes the algorithm details for the first half step n 7→ n+ 1
2 . For each fixed h? and U?, it

involves solving a sequence of linear block tridiagonal system for each j = 1, . . . , JJ . Then the process

is repeated with updates of h? and U? till convergence h? → hn+
1
2 and U? → Un+

1
2 .

The second half step is constructed similarly with x−derivatives explicit and y−derivatives implicit,
and the integration is along vertical grid lines. The details are given in the report of Alemi Ardakani
& Bridges (2009f ).

11. Numerical results: coupled roll-pitch forcing
Suppose the vessel is prescribed to undergo a roll-pitch motion using the Euler angle representation

in §8.1. The roll and pitch motions are taken to be harmonic and of the form

φ (t) = εr sin (ωrt) and θ (t) = εp sin (ωpt) .
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Figure 5. Snapshots of free surface profile at a sequence of times for coupled roll-pitch forcing.

The body representation of the angular velocity is then

Ω(t) =

εrωr cos (ωrt) cos(εp sinωpt)
ωpεp cosωpt

εrωr cos (ωrt) sin(εp sinωpt)

 ,

and the gravity vector is

g(t) := gQT e3 = g

− cosφ(t) sin θ(t)
sinφ(t)

cosφ(t) cos θ(t)

 .

The vessel and fluid geometry parameters are set at

L1 = 1.0m, L2 = 0.80m, h0 = 0.13m, d1 = −0.50m, d2 = −0.40m, d3 = 0.0m.

The numerical parameters are set at

∆x = 0.02m, ∆y = 0.016m, ∆t = 0.01 s .

Typical CPU time is about 5 seconds per time step without any special optimisation, and a typical run
is 500–600 time steps. Simulations are run with quiescent initial conditions: U = V = 0 and h = h0

at t = 0.
With this fluid geometry, the natural frequencies (8.8) are

ωmn ≈ 3.54
(
m2 +

n2

.64

)1/2

rad/sec ,

with the first two: ω10 ≈ 3.54 rad/sec and ω01 ≈ 4.43 rad/sec.
Figures 5 and 6 show snapshots of the free surface at a sequence of times when

εp = 1.0◦ , εr = 2.0◦ , and ωp = ωr = 2.40 rad/sec .

The forcing frequency is much lower than any of the natural frequencies in this case, and the fluid
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Figure 6. Snapshots of free surface in the roll-pitch case: continued.

response is relatively gentle.
Changing the roll and pitch excitation frequency to the natural frequency for each direction,

ωr = 3.54 rad/sec and ωp = 4.43 rad/sec ,

a steep bore forms at t = 2.0 sec as shown in Figure 7.
Consider now the same amplitudes but a higher frequency

ωr = ωp = 5.60 rad/sec ,

which is close to the (1, 1) natural frequency. A bore is generated and its propagation between the
tank’s walls is illustrated in Figure 8. The corresponding velocity fields associated with Figure 8 are
shown in Figure 9. As can be seen the water particles near the wave fronts have greater speed than in
other parts of the tank, and the numerical scheme captures the travelling hydraulic jump very well.

12. Yaw motion and potential vorticity conservation
The case of pure yaw forcing is of interest for several reasons. First, there is a form of potential

vorticity conservation; secondly, the surface SWEs and the HH SWEs agree in this case (assuming
equal velocity fields) and so the results can be compared, and thirdly this case is the closest to the
rotating SWEs in geophysical fluid dynamics.

In the case of pure yaw forcing, the coefficients in the surface SWEs reduce considerably. With
Ω1 = Ω2 = 0 and Ω3 = ψ̇, where ψ(t) is the yaw angle,

a11 = a22 = g , a12 = a21 = 0

b1 = 2Ω3V + Ω2
3(x+ d1) + Ω̇3(y + d2)

b2 = −2Ω3U + Ω2
3(y + d2)− Ω̇3(x+ d1) .

The surface equations and the HH equations are identical (assuming equivalent velocity fields) and
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Figure 7. Snapshots of free surface profile in the roll-pitch case when the forcing frequency is near the (1, 0)
and (0, 10 natural frequencies.

Figure 8. Roll-pitch forcing with high frequency, showing formation and propagation of a hydraulic jump.

the momentum equations reduce to the classical SWEs with forcing

Ut + UUx + V Uy + ghx = 2ψ̇V + ψ̇2(x+ d1) + ψ̈(y + d2)

Vt + UVx + V Vy + ghy = −2ψ̇U + ψ̇2(y + d2)− ψ̈(x+ d1) .
(12.1)
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Figure 9. Field of velocity vectors associated with the roll-pitch motion in Figure 8.

These equations conserve a form of potential vorticity. Let

PV :=
Vx − Uy + 2ψ̇

h
.

Then differentiating and using (12.1) shows that

Dhorz

Dt
PV :=

∂

∂t
PV + U

∂

∂x
PV + V

∂

∂y
PV = 0 ,

and so PV is a Lagrangian invariant for the SWEs (12.1).
Consider the yaw motion to be harmonic

ψ (t) = εy sin (ωyt) , (12.2)

with parameters

εy = 10.0◦ , and ωy = 4.1746 rad/sec .

Set the vessel and fluid parameters at

L1 = 1.0m, L2 = 1.0m, h0 = 0.18m, d1 = −0.5m, d2 = −0.5m, d3 = −0.3m.

The numerical parameters are set at

∆x = ∆y = 0.02m, and ∆t = 0.01 s .

The forcing frequency is near the lowest natural frequency. The natural frequencies are

ωmn ≈ 4.1746
√
m2 + n2 rad/sec .

Snapshots of the surface profile at different values of time are depicted in Figures 10 and 11. There
is a very clear swirling motion set up. The corresponding velocity fields associated with Figure 11 are
depicted in Figure 12. Here we start to see evidence of a vorticity field. It is predominantly due to
the input into the vorticity by the yaw rotation, but this vorticity is enhanced due to the presence of
viscous-like truncation error in the numerical scheme.
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Figure 10. Snapshots of surface profile due to yaw forcing.

Figure 11. Snapshots of surface profile due to yaw forcing: continued.

12.1. Comparison with results of Huang & Hsiung (1996)

Now change the parameters in order to compare with the results of Huang & Hsiung (1996). Set the
vessel and fluid parameters at

L1 = 1.0m, L2 = 0.8m, h0 = 0.1m, d1 = −0.5m, d2 = −0.4m, d3 = 0.0m.
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Figure 12. Velocity fields associated with Figure 11.

The numerical parameters are

∆x = 0.02m, ∆y = 0.016m, ∆t = 0.01 s .

The forcing is harmonic yaw motion as in (12.2) with parameters

εy = 4.0◦ , ωy = 6.0 rad/sec .

The snapshot of the surface profile at t = 1.5 s and the corresponding velocity field are depicted
in Figure 13. This result agrees very well with Figure 28 of Huang & Hsiung (1996), including the
vortex pattern. The initial conditions are vorticity free. Hence the generation of vorticity is due to the
imposed rotation, but it appears to be enhanced by the numerical dissipation.

13. Numerical results: coupled surge-sway motion
Suppose the rotation is zero and the motion undergoes pure translation in the x and y directions.

These surge and sway motions are considered to be harmonic

q1 (t) = ε1 cos (ω1t) and q2 (t) = ε2 cos (ω2t) ,

with
ε1 = ε2 = 0.004602m, ω1 = ω2 = 4.8006 rad/sec .

Set the vessel and fluid aspect ratio parameters at

L1 = 0.59m, L2 = 0.59m, h0 = 0.2997m.

The offset d = 0 since there is no rotation. The numerical parameters are set at

∆x = ∆y = 0.0196m, ∆t = 0.01 s .

The forcing frequency is chosen to be very near the natural frequency of the exact (not SWE) lowest
natural frequency

ω10 ≈ 1.008
√
gπ tanh(πh0) .
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Figure 13. Surface profile and velocity field due to yaw at t = 1.5 s: comparison of the numerics based on
the surface SWEs with Figure 28 of Huang & Hsiung (1996).

Figure 14. Location of the points P1 to P8 in the tank cross section.

Particular points are chosen on the vessel cross-section in order to show time histories. This approach
is inspired by the simulations of Wu & Chen (2009). The points are labelled as shown in Figure 14.
The sloshing histories of surface displacements at points P1, P2, P4 and P7 are depicted in Figure 15.

The parametric graphs are depicted in Figure 16 showing the presence of square-like waves in the
tank.
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Figure 15. Sloshing histories of surface displacements at points P1 (uppermost plot), P2, P4 and P7 (lowest
plot). The horizontal axis is time in seconds, and vertical axis is wave height in meters.

Figure 16. Parametric graphs.

Changing the forcing parameters to

ε1 = 0.0236m, ε2 = 0.0020647m,

and

ω1 = ω2 = 4.7482 rad/sec .

These frequencies are close to lowest natural frequency of the full system (rather than the SWE natural
frequency)

ω10 ≈ 0.997
√
gπ tanh(πh0) .
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Figure 17. Time histories of the surface displacements at points P1 (upper plot), P2, P4 and P7 (lower
plot). The horizontal axis is time in seconds, and vertical axis is wave height in meters.

Figure 18. Parametric graphs.

The time histories of surface displacements at points P1, P2, P4 and P7 are depicted in Figure 17.
Further parametric graphs are depicted in Figure 18 showing the presence of planar waves in the

tank.
Snapshots of the surface profile at different times are depicted in Figures 19 and 20.

14. Numerical results: coupled yaw-pitch-roll motion
The vessel motion is simulated using the 3-2-1 Euler angles introduced in §8.2. The expression for

Q is given in equation (8.6) and the required body represenation of the angular velocity is given in
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Figure 19. Snapshots of surface profile due to surge and sway.

Figure 20. Snapshots of surface profile due to surge and sway: continued.

(8.7). The yaw, pitch and roll angles are taken to be harmonic

ψ (t) = εy sin (ωyt) , θ (t) = εp sin (ωpt) , φ (t) = εr sin (ωrt) .
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Figure 21. Snapshots of surface profile due to roll, pitch and yaw.

The gravity vector is

g(t) := gQT e3 = g

 − sin θ(t)
sinφ(t) cos θ(t)
cosφ(t) cos θ(t)

 .

Set the fluid and vessel geometry parameters at

L1 = 0.50m, L2 = 0.50m, h0 = 0.12m, d1 = −0.25m, d2 = −0.25m, d3 = 0.0m.

With this geometry the natural frequencies are

ωmn ≈ 6.82
√
m2 + n2 rad/sec .

We will present results for a typical run in this configuration. Take the forcing function parameters
to be

εy = 2.0◦ , εp = 1.0◦ , εr = 1.0◦ , ωy = ωp = ωr = 5.2171 rad/sec ,
and set the numerical parameters at

∆x = ∆y = 0.01m and ∆t = 0.01 s .

With this low amplitude of forcing the singularity of the Euler angles is safely avoided. About 5.4
seconds of CPU time per required per time step, and simulations were run for about 600 time steps.

Snapshots of the surface profile at a sequence of times are depicted in Figures 21 to 23.

15. Concluding remarks
A new set of shallow water equations which model the three-dimensional rigid body motion of

a vessel containing fluid has been derived. The only assumptions are on the vertical velocity and
acceleration at the surface. The equations give new insight into shallow water sloshing, include the
effect of viscosity, and numerical simulations are much faster than the full 3D equations. The equations
capture many of the features of 3D sloshing for the case when the free surface is single valued.

In this paper the vessel motion has been prescribed. The vessel motion can also be determined by
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Figure 22. Snapshots of surface profile due to roll, pitch and yaw: continued.

Figure 23. Snapshots of surface profile due to roll, pitch and yaw: continued.

solving the rigid body equations coupled to the fluid motion. Some results, for the case of coupled
motion for a rigid body with shallow water fluid in two dimensions, have recently been obtained (Alemi
Ardakani & Bridges 2009b,a). The extension to coupling between three-dimensional rigid body motion
and shallow water sloshing is however a big step due to the nature of rotations in 3D. The equations
of 3D rigid body motion coupled to sloshing have been derived by Veldman et al. (2007) for the case
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of sloshing in spacecraft. However, simulation in this case is very time consuming. The new surface
SWEs introduced here represent the vehicle motion exactly, and therfore provide an opportunity for
more efficient simulation of the coupling between the vehicle motion and 3D shallow water sloshing.

— Appendix —

Appendix A. The horizontal pressure gradient
A.1. x−derivative of pressure

Differentiate (3.2) with respect to x

1
ρ

∂p

∂x
= hx

Dw
Dt

∣∣∣∣h +
∫ h

z

(
Dw
Dt

)
x

ds

+2Ω1V hx + 2Ω1

∫ h

z
vx ds− 2Ω2Uhx − 2Ω2

∫ h

z
ux ds

−(Ω2
1 + Ω2

2)(h+ d3)hx − βx(h− z)− βhx − σ∂xdiv(κ) .

Use the vorticity equation to substitute for
(

Dw
Dt

)
x

1
ρ

∂p

∂x
= hx

Dw
Dt

∣∣∣∣h +
∫ h

z

[(
Du
Dt

)
z
− 2Ω1

∂v
∂x − 2Ω2

∂v
∂y − 2Ω3

∂v
∂z + 2Ω̇2

]
ds

+2Ω1V hx + 2Ω1

∫ h

z
vx ds− 2Ω2Uhx − 2Ω2

∫ h

z
ux ds

−(Ω2
1 + Ω2

2)(h+ d3)hx − βx(h− z)− βhx − σ∂xdiv(κ) .

or

1
ρ

∂p

∂x
= hx

Dw
Dt

∣∣∣∣h + Du
Dt

∣∣∣∣h
z

− 2Ω1

∫ h

z
vx ds− 2Ω2

∫ h

z
vy ds− 2Ω3

∫ h

z
vz ds+ 2Ω̇2(h− z)

+2Ω1V hx + 2Ω1

∫ h

z
vx ds− 2Ω2Uhx − 2Ω2

∫ h

z
ux ds

−(Ω2
1 + Ω2

2)(h+ d3)hx − βx(h− z)− βhx − σ∂xdiv(κ) .

or

Du

Dt
+

1
ρ

∂p

∂x
= Du

Dt

∣∣∣∣h + Dw
Dt

∣∣∣∣h hx + 2Ω2W − 2Ω3V + 2Ω̇2(h− z)

+2Ω1V hx − 2Ω2Uhx − 2Ω2w + 2Ω3v

−(Ω2
1 + Ω2

2)(h+ d3)hx − βx(h− z)− βhx − σ∂xdiv(κ) ,

(A-1)

which is equation (3.3) in §3.

A.2. y−derivative of pressure

Differentiate (3.2) with respect to y

1
ρ

∂p

∂y
= hy

Dw
Dt

∣∣∣∣h +
∫ h

z

(
Dw
Dt

)
y

ds

+2Ω1V hy + 2Ω1

∫ h

z
vy ds− 2Ω2Uhy − 2Ω2

∫ h

z
uy ds

−(Ω2
1 + Ω2

2)(h+ d3)hy − βy(h− z)− βhy − σ∂ydiv(κ) .
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Use the vorticity equation to substitute for
(

Dw
Dt

)
x

1
ρ

∂p

∂y
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Dw
Dt
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∫ h

z
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ds
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z
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z
uy ds

−(Ω2
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2)(h+ d3)hy − βy(h− z)− βhy − σ∂ydiv(κ) .

or

1
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z
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z
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∫ h

z
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1 + Ω2

2)(h+ d3)hy − βy(h− z)− βhy − σ∂ydiv(κ) .

or

Dv
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+

1
ρ
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∂y
= Dv
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−(Ω2
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(A-2)

which is equation (3.4) in §3.

A.3. The y−momentum equation

The y−component of the momentum equations (2.5) is

Du

Dt
+

1
ρ

∂p

∂x
= +2(Ω1w − Ω3u) + Ω̇1(z + d3)− Ω̇3(x+ d1)

−Ω2 Ω · (x + d) + (y + d2)‖Ω‖2 −Qe2 · q̈− gQe2 · e3 .
(A-3)

Now equate (3.4) and (A-3)

Dv

Dt
+

1
ρ

∂p

∂y
= Dv

Dt

∣∣∣∣h + Dw
Dt

∣∣∣∣hhy − 2Ω1W + 2Ω3U − 2Ω̇1(h− z)

+2Ω1V hy − 2Ω2Uhy + 2Ω1w − 2Ω3u

−(Ω2
1 + Ω2

2)(h+ d3)hy − βy(h− z)− βhy − σ∂ydiv(κ)

−2(Ω1w − Ω3u)− Ω̇1(z + d3) + Ω̇3(x+ d1)

+Ω2 Ω · (x + d)− (y + d2)‖Ω‖2 + Qe2 · q̈ + gQe2 · e3

which after simplification and substitution for βy becomes

Dv
Dt

∣∣∣∣h + Dw
Dt

∣∣∣∣hhy − 2Ω1W + 2Ω3U − Ω̇1(h+ d3)

+2Ω1V hy − 2Ω2Uhy + Ω̇3(x+ d1)

−(Ω2
1 + Ω2

2)(h+ d3)hy + Ω2Ω3(h+ d3)− βhy − σ∂ydiv(κ)

+Ω2Ω1(x+ d1)− (Ω2
1 + Ω2

3)(y + d2)

+Qe2 · q̈ + gQe2 · e3 = 0

Replace W using the kinematic condition

W = ht + Uhx + V hy ,
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giving

Dv
Dt

∣∣∣∣h + Dw
Dt

∣∣∣∣hhy − 2Ω1(ht + Uhx + V hy) + 2Ω3U − Ω̇1(h+ d3)

+2Ω1V hy − 2Ω2Uhy + Ω̇3(x+ d1)

−(Ω2
1 + Ω2

2)(h+ d3)hy + Ω2Ω3(h+ d3)− βhy − σ∂ydiv(κ)

+Ω2Ω1(x+ d1)− (Ω2
1 + Ω2

3)(y + d2)

+Qe2 · q̈ + gQe2 · e3 = 0

Now use the fact that

Vt + UVx + V Vy =
Dv

Dt

∣∣∣∣h .
Then the surface y−momentum equation is reduced to the expression given in (4.7).

†
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